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Abstract—Random Early Detection (RED) is an active queue manage-
ment mechanism designed to provide better performance than traditional
DropTail. However, its parameter setting has proved to be very sensitive to
network scenarios and needs constant tuning to achieve ideal performance
under varying network conditions. In view of the fact that RED has not
been understood well enough for an analytical approach, this paper takes
advantage of network simulation techniques and formulates the optimal
configuration of RED as a black-box optimization problem. An optimiza-
tion objective is designed to effectively reflect the tradeoff between uti-
lization and queueing delay. Based on the proposed RED optimization
scheme, a general automatic network management system, i.e., on-line
simulation system[1], has been used for the on-line tuning of RED under
changing network conditions. The proposed approach is empirically val-
idated with simulations and real network experiments. The simulation
results show that RED controlled with on-line simulation system is able to
stabilize around the expected equilibrium status under varying conditions
and maintain high utilization.

I. I NTRODUCTION

Congestion control in the current Internet is accomplished
by end-to-end congestion avoidance together with queue man-
agement mechanism. Traditional DropTail queue management
could not effectively prevent the occurrence of serious con-
gestion and often suffer from long queueing delays. Further-
more, the global synchronization may occur during the period
of congestion, i.e., a large number of TCP connections experi-
ence packet drops and hence back off their sending rate at the
same time, resulting in underutilization and large oscillation of
queueing delay. Random Early Detection (RED) has been pro-
posed [2] to address these problems. The basic idea of RED is
to detect the inception of congestion and notify traffic sources
early to avoid serious congestion. It has been demonstrated
to be able to avoid global synchronization problem, maintain
low average queueing delay and provide better utilization than
DropTail[2]. Therefore, IETF has recommended RED as the
single active queue management for wide deployment in the In-
ternet[3]. However, the setting of RED parameters has proved
to be highly sensitive to network scenarios and the performance
of misconfigured RED may suffer significantly [4], [5], [6]. In
addition, since network is a dynamic system, RED needs con-
stant tuning to adapt to current network conditions. In view of
this, it has been debated whether or not RED can achieve its
claimed advantages[6], [7], [8].

This paper attempts to address the following questions:
• Given a network scenario, how to optimally configure RED
parameters?
• Given varying network conditions, how to dynamically tune

RED to the optimal setting?
• When optimally configured, can RED effectively control
congestion and achieve its design objective?

Currently the interaction between RED and TCP is not yet
clearly understood. Based on simplified models, some general
guidelines for setting RED parameters have been proposed[2],
[5], [9]. Intuitive modifications on RED have also been pro-
posed to automate the tuning of RED under varying network
conditions by adjusting one of the parameters[4], [10]. How-
ever, the effectiveness of these methods in complex network
scenarios is still under investigation. Rather than relying on
simplified models or intuition, this paper exploits the advantage
of network simulation technique and formulates the optimal
configuration of RED as a black-box optimization problem. In
this approach, RED is considered as a black-box and network
simulation is used to evaluate its performance in a specific pa-
rameter setting. With this empirical mapping between perfor-
mance metric and parameter setting, a black-box optimization
algorithm, such as genetic algorithm, can be employed to ob-
tain the optimal RED setting.

This paper adopts a general network management scheme,
i.e., on-line simulation system[1], to adjust RED configuration
to varying network conditions. The on-line simulation scheme
monitors network conditions and constantly tunes RED with
the proposed RED optimization scheme when network condi-
tions change. The underlying assumption of the on-line tuning
scheme is that network conditions arequasi-stationary, i.e.,
they do not change too fast. Note that the on-line simulation
system does not attempt to change network protocols in any
way but only applies“second-order” controlover network by
tuning network protocol parameters. As a result, it is highly
flexible and can be applied to any network protocol.

The paper first analyzes the mechanism of RED and then
proposes an appropriate performance metric to effectively re-
flect the tradeoff between utilization and queueing delay. The
features of the RED optimization problem are also examined
and an efficient black-box optimization algorithm is selected
accordingly. Simulations and real network experiments have
been performed to validate the proposed approach. The results
demonstrate that RED is capable of effectively controlling con-
gestion and achieving its design objective when dynamically
tuned.

The rest of the paper is organized as follows: Section II an-
alyzes RED mechanism and the sensitivity of its parameters to



network conditions, and proposes a performance metric for use
in RED optimization. Section III empirically validates the on-
line tuning approach with simulations and experiments in real
network. Section IV concludes this paper and presents further
research directions.

II. FORMULATION OF RED OPTIMIZATION PROBLEM

A. Parameter Sensitivity of RED

RED uses the average queue sizeq̄ as an indicator of the con-
gestion extent and determines the packet drop rate accordingly.
Fig 1 illustrates the working mechanism of RED. As shown in
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Fig. 1. RED working mechanism

the figure, the instantaneous queue sizeq is sampled at every
packet arrival and then passed through a low-pass filter to re-
move transient noises. Based on the smoothed average queue
sizeq̄, the drop probabilityP is calculated with a control func-
tion P = f(q̄). The arrived packets are randomly dropped (or
marked) according to this probabilityP . Traffic sources react
to these drops and adjust offered loadr accordingly. There-
fore, RED is mainly designed to work with TCP traffic sources
which are responsive to packet drops and it will not work well
in the cases like UDP traffic or short-life HTTP traffic.

A queue will build up and keep increasing if the offered load
is larger than the bottleneck capacity; therefore, the objective
of a queue management is to stabilize the offered load around
the bottleneck capacity. Basically, TCP sources increase their
sending rate every round trip time; on the other hand, the packet
drops cause TCP sources to lower their sending rates. In the
equilibrium status, the increase rate of TCP traffic should be
approximately equal to its decrease rate caused by packet drops
and thus the offered load will stabilize around a certain level.
If this equilibrium status is achieved while maintaining a cer-
tain queue size, the link utilization will be close to 1, i.e., the
offered load will stabilize around the bottleneck capacity. The
rationale of RED is to search for an appropriate packet drop rate
by varying the average queue size to counteract the increase of
offered load.

There are four parameters in RED. Among them, the moving
average weightwq determines the cut-off frequency of the low-
pass filter, and the other three parameters, i.e., minimum thresh-
old minth, maximum thresholdmaxth and maximum drop
probability maxp, determine the control functionP = f(q̄).
In the standard version of RED, the control function is deter-
mined by the parameters as illustrated in Fig 2. With this func-
tion, the drop probability can be calculated according to the
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Fig. 2. RED control functionP = f(q̄)

average queue size. The equilibrium drop probability depends
on two factors, the offered load increase rate and the granular-
ity of congestion notification, i.e., the load decrement caused
by one packet drop. With TCP fast recovery and fast retrans-
mission mechanism, each drop will cause a TCP source to de-
crease its sending rate by half. Therefore, the granularity of the
congestion notification is determined by the average TCP send-
ing rate. When the average sending rate is large, for example,
a small number of TCPs share a bottleneck, each packet drop
will cause a large decrease in offered load, andvice versa. In
different scenarios, the increase rate of offered load is also dif-
ferent. For example, the increase rate will be large when there
are many TCP flows or the round trip time is short. As a result,
the drop probability should be adjusted according to network
scenarios to maintain a stable equilibrium point. If the control
function remains unchanged, the average queue size has to be
varied to obtain the new equilibrium drop probability. There-
fore, to keep the average queue size stable around a certain level
in varying conditions, the control function has to be adjusted
accordingly, i.e., the three parameter which determinesf(q̄)
should be dynamically tuned.

wq controls the cut-off frequency of the low-pass filter. The
cut-off frequency should be high enough to detect manage-
able traffic variations, while low enough to filter out transient
traffic oscillations which can not be effectively controlled by
RED. For example, the oscillation within one round trip time
rtt should be removed. Therefore, the optimalwq is usually
related tortt. In addition, since the average queue size is cal-
culated at every packet arrival instead of a constant interval,
different link speeds will result in different packet arrival in-
tervals and hence affect the cut-off frequency of the low-pass
filter. Consequently, the optimalwq is also dependent on the
link speed.

B. Optimization Objective

For a queue management mechanism, there are basically two
performance metrics, i.e., link utilization and average queue
size. The main objective of RED is tomaintain a high uti-
lization while keeping a low average queue size[2]. However,
optimizing one of the performance metrics may compromise
the other. For example, a high link utilization can always be
obtained by increasingminth or decreasingmaxp, hence vir-
tually increasing the average queue size. On the other hand, a
low average queue size can be obtained by decreasingmaxth



or increasingmaxp. However, this obviously will cause under-
utilization of the link. Therefore, an appropriate tradeoff has to
be made to reflect the requirement of network operators. This
is essentially a multi-objective optimization problem and cor-
responding techniques should be employed to convert it into a
tractable single objective problem.

One classic multi-objective optimization technique is to op-
timize the weighted average of the performance metrics. The
weights for different metrics reflect the quantitative tradeoff
among them and are essential to the effectiveness of optimiza-
tion results. However, the weights are normally difficult to
determine. Another common technique is to define the lower
limits for less significant metrics, and only optimize the most
important one with the restriction that the other metrics are
not below their limits. In this paper, instead of using tradi-
tional multi-objective optimization techniques to directly work
on link utilization and queueing delay, we have proposed a per-
formance metric whose optimization will cause RED to settle
in a equilibrium status and hence achieve high utilization and
low queueing delay.

As mentioned above, in the equilibrium status, the average
queue size of RED stabilizes around a certain level. When traf-
fic pattern changes, the equilibrium point may also shift which
makes the average queue size move around. This is an un-
desired behavior since end users normally expect a predictable
delay and constant changes in delay are unacceptable for delay-
sensitive applications. Furthermore, when the average queue
size drifts beyond the control of RED, RED will become unsta-
ble, i.e., the queue status oscillates between full and empty[4],
[5]. This not only causes end users to experience significant de-
lay jitters, but also results in link underutilization. Therefore, it
is important to keep the average queue size of RED stable at a
target level, such as the middle betweenminth andmaxth as
proposed in[10]. In consideration of this, we define the perfor-
mance metric to be optimized as:

m =
∑N

i=1(q̄i − q0)2

N
(1)

whereq0 is the expected average queue size predefined by net-
work operators,̄qi is the periodic sample of the average queue
size andN is the number of samples. This metric essentially
calculates the variance of the average queue size relative to
q0 over a certain period of time. When the equilibrium level
of RED is far from the expected level,m will be large. Or
when RED is misconfigured and hence the equilibrium cannot
be reached, the queue size will oscillate greatly, also resulting
in a largem. Therefore, minimizingm will cause RED to avoid
both situations and always maintain an equilibrium aroundq0.
Thus, high link utilization and stable queueing delay can both
be achieved.

C. Choice of Optimization Algorithm

Based on the above analysis, the optimization of RED can be
formulated as: given a parameter spaceD specifying the ranges

of parameters, minimize the following objective function

m = f(wq, minth,maxth, maxp) (2)

Here, m is the performance metric to be optimized, i.e., the
variance of RED queue size relative to the expected level.f(·)
is a scalar function mapping a set of RED parameters to the
performance metric.f(·) is determined by specific network
scenario and is analytically unknown, which is the basic fea-
ture of black-box optimization. For a set of RED parameters,
the value ofm can be empirically evaluated with network sim-
ulation based on Equation (1).

Due to the strong demand in various areas of science and en-
gineering, a large number of black-box optimization algorithms
have been proposed, such as genetic algorithm, simulated an-
nealing and tabu search. These algorithms have met with much
success, but no one seems to consistently outperform the oth-
ers. In fact, the so-calledNo Free Lunch Theorem[11] has theo-
retically demonstrated that any optimization algorithm can only
achieve the same average performance over all classes of prob-
lems. However, for one specific class of problems, it is possible
for one optimization algorithm to outperform the others when
its search techniques match properties of the underlying prob-
lem.

The desired optimization algorithm for on-line tuning of
RED is required to have the following characteristics:
High efficiency, i.e., quickly find better parameters with a
minimum number of network simulations. This is because net-
work simulation is often time-consuming. As a result, the em-
phasis of the algorithm should not be on seeking the strictly
global optimum, but on finding a better solution before current
network conditions change.
Scalability to high-dimensional problemsThis is because of
the existence of a large number of protocol parameters to be
tuned in a network.
Robustness to noiseNetwork simulation only provides an ap-
proximate evaluation of the objective function, and further-
more, inaccuracies in network modeling may also introduce
noises into the objective function. For example, Fig 3 shows
an empirical objective function obtained with network simula-
tions, where the performance metric, average drop rate of RED,
is plotted as a function of two parameters,wq andmaxp. The
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Fig. 3. Shape of empirical objective function obtained through network simu-
lation



figure demonstrates that there are many small oscillations im-
posed on the overall structure of the objective function. Note
that using packet drop rate as the performance metric is only
for the purpose of illustrating the property, and any other met-
ric should expect similar effects.

Taking the above features into account, a Recursive Random
Search algorithm (RRS) has been proposed in [12] for the effi-
cient optimization of network protocols. The RRS is based on
the high-efficiency feature of random sampling at initial steps.
The idea is to use the first part of high-efficiency random sam-
ples to identify promising areas and then start recursive random
sampling processes in these areas which shrink and re-align the
sample space to local optima. Readers can refer to [12] for
more details. RRS will be used in this paper for the tuning
of RED. Simulations have proved that the algorithm is able to
generate good solutions very quickly.

III. T EST RESULTS

A. Simulation for Optimization of Single RED

Extensive simulations have been performed to validate the
effectiveness of the proposed approach. Due to the space limit,
the paper only presents two of these simulations which deal
with varying traffic load and round trip time, two major factors
affecting RED performance.

The network topology used in the simulations is shown in
Fig 4. We have adopted the widely usedns[13] as the simula-

r1
10Mbps, 10ms

TCP sources TCP sinks

45Mbps,2ms
RED

...
...

...
...

45Mbps,2ms

r2

Fig. 4. Network topology for simulation

tion tool. Infinite FTP traffic between TCP sources and sinks
is used to build up a queue at routerr1. RED is configured on
r1 to manage a 100-packet buffer. Each simulation runs for 80
seconds and at half of the simulation time, network conditions
are changed. We will compare the performance of standard
RED and RED controlled with the on-line simulation scheme.

We define an expected average queue size of 30 packets
and the objective is to maintain the equilibrium status of RED
around this level. According to the common guideline of RED
parameter setting, we useminth = 15,maxth = 45, maxp =
0.1, wq = 0.002 for standard RED. We also assume that the on-
line simulation scheme can promptly detect the change in net-
work conditions and trigger the optimization process of RED
parameters. In reality, this can be achieved by monitoring the
change in performance metrics or analyzing traffic statistics di-
rectly.

First we test the tuning of RED to varying traffic load. The
simulation starts with 16 TCP flows and then increases the of-

fered load to 64 flows after around 20 seconds. The instan-
taneous queue sizes of standard RED and RED with on-line
simulation control are shown in Fig 5.
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Fig. 5. Comparison of standard RED (upper graph) and RED controlled by
on-line simulation (lower graph) under varying traffic load

Then we test the tuning of RED to varying round trip time.
The simulation starts with 16 TCP flows and each with a round
trip time of 28ms (not including queueing delay). In the mid-
dle of the simulation, these flows are gradually replaced by
the ones with artt of 180ms. The instantaneous queue sizes
of standard RED and RED with on-line simulation control are
shown in Fig 6.
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Fig. 6. Comparison of standard RED (upper graph) and RED controlled by
on-line simulation (lower graph) under varying round trip time

The above simulations indicate that when dynamically tuned
with the proposed approach, RED is able to maintain an equi-
librium status in changing network conditions. The queue size
is very stable and the utilization is close to 100%. For standard
RED, when the configuration does not match for network con-
ditions, the equilibrium status might not be reached and large
oscillations in the queue size could happen as shown in the fig-
ures. This also causes underutilization. For example, in the
simulations, the average utilization of standard RED can only
reach around 93% or lower.



B. Real Network Experiment for Optimization of Multiple RED
Queues

The effectiveness of our approach is also tested with exper-
iments in real network situations. This section presents one
such experiment. A Linux-based testbed shown in Fig 7 is used
andns is adopted for network simulation in the on-line simu-
lation system. There are 4 Linux routers in the network and
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Fig. 7. Linux-based testbed topology with multiple RED queues

each of them is configured with a RED queue which is moni-
tored and controlled by the on-line simulation system through
SNMP. Again, infinite FTP sources are used to generate net-
work traffic. Note that in this test we will try to tune the pa-
rameters for all four RED concurrently. Since optimizing each
RED individually may compromise the performance of the oth-
ers, we have taken all RED queues as a single black-box system
with a total of 16 parameters. Consequently, a global perfor-
mance metric has to be defined based on the objective of net-
work operators. If using ISP-based metrics, such as utilization
and queueing delay, a certain multi-objective technique has to
be employed to combine the metrics from every RED router.
Instead, we have selected an end user performance metric, i.e.,
the coefficient of variation (σµ ) of goodputs for TCP connec-
tions, which measures the variability of TCP goodputs. This
choice is somewhat arbitrary, only to demonstrate the effec-
tiveness of our approach. In addition, choosing such a metric
is also to demonstrate the flexibility of the approach, i.e., rather
than being restricted to a few metrics like utilization and delay,
RED can be tuned according to any performance metric de-
fined by network operators though the mechanism of how RED
affects this performance metric may be completely unknown.

During the experiment, a number of TCP flows are gener-
ated from one side to the other. The goodputs of these TCP
flows are collected periodically from TCP sinks. The COV of
the goodputs is calculated and plotted as a function of time as
shown in Fig 8. In the beginning, the parameters of these RED
queues are set to random values to present a misconfigured sys-
tem, which results in a large unfairness between TCP flows, i.e.,
a high average COV value and large oscillations. At 325 sec-
ond, the on-line simulator starts and detects the misconfigura-
tion of REDs. Soon the good configuration with a performance
better than a predefined threshold is found and the network is
reconfigured. This results in an immediate performance im-
provement as shown in the plot: the average of COV drops to
a very low value and the instantaneous COV curve becomes

stable over time.
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Fig. 8. Tuning multiple RED queues for optimizing coefficient of variation of
goodputs

IV. CONCLUSION

To achieve the performance advantages claimed in RED,
the parameters of RED have to be dynamically configured ac-
cording to current network conditions. This paper formulates
the optimal configuration of RED as a black-box optimiza-
tion problem and then uses an automatic network management
scheme proposed in [1] to perform on-line tuning of RED. Ap-
propriate formulation of an optimization problem needs insight
into the underlying problem. The control mechanism of RED
and the sensitivity of its parameters are investigated. Based
on the analysis, a performance metric is established to best re-
flect the tradeoff between the two major optimization objec-
tives of utilization and queueing delay. Simulation results have
demonstrated that when managed by the proposed approach,
RED can effectively control congestion under varying network
conditions and achieve its design objective.

The approach for RED tuning presented in this paper is a
highly flexible technique. It can be easily applied to other net-
work protocols, such as OSPF and BGP. Its flexibility also lies
in the fact that it can be easily adapted to achieve various op-
timization objectives, such as optimzing RED for minimum
packet loss. This black-box approach is especially advanta-
geous in the cases where the mechanism of how the underly-
ing network protocol affects the concerned performance metric
is not well understood. The success in applying the proposed
scheme to real network relies on two key factors: the sensitivity
of network protocol parameters to network conditions, and the
accuracy of network monitoring and modeling which is a very
active subject in current networking research.

Optimization techniques can also be used for the study of
network protocols. The obtained empirical knowledge can
help with better understanding of network protocols. For ex-
ample, we can optimize RED for different network scenarios
and obtain the correlations between RED parameters and net-
work conditions, such as the correlation betweenwq and round
trip time. Further investigation of RED with optimization tech-
niques is one of our future research directions.
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