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ABSTRACT

Performance analysis techniques are fundamental to the process of network proto-

col design and operations. A variety of techniques have been used by researchers in

different contexts: analytic models (eg: TCP models, web models, self-similar mod-

els, topology models), simulation platforms (eg: ns-2, SSFnet, GloMoSim, Genesis),

prototyping platforms (eg: MIT Click Router toolkit [9], XORP [10]), tools for sys-

tematic design-of-experiments and exploring parameter state spaces (eg: Recursive

Random Search, STRESS [13]), experimental emulation platforms (eg: Emulab),

real-world overlay deployment platforms (eg: Planetlab), and real-world measure-

ment and data-sets (eg: CAIDA [26], Rocketfuel [27]).

The high-level motivation behind the use of these tools is simple: to gain

varying degrees of qualitative and quantitative understanding of the behavior of the

system-under-test. This high-level purpose translates into a number of specific lower-

level objectives, such as: validation of protocol design and performance for a wide

range of parameter values (parameter sensitivity), understanding of protocol stabil-

ity and dynamics, and studying feature interactions between protocols. Broadly, we

may summarize the objective as a quest for general invariant relationships between

network parameters and protocol dynamics.

To address these needs, we developed an experiment design platform that

will allow us to empirically model and heuristically search for optimizing protocol

response. In general the protocol response is a function of a large vector of parame-

ters, i.e., is a response surface in a large-dimensional parameter space (perhaps tens

of thousands or more dimensions). We build off recent work at Rensselaer on an

efficient search algorithm (called Recursive Random Search) for large-dimensional

parameter optimization, and empirical modeling of protocol performance character-

istics especially in “interesting” regions of the parameter state space. The result of

this work includes a unified search, empirical modeling and optimization framework

with demonstrated ability to pose meaningful large-scale network design questions

and provide “good” models rapidly.

xiii



CHAPTER 1

Introduction

This chapter focuses on the motivation for the research, illustrates the scope of the

thesis and presents the main contributions.

1.1 Motivation

Before we can deploy new network protocols or modifications to large scale

networks, certain assurances of design, scalability and performance must be met.

The networking community lacks performance analysis tools that will help us design,

analyze, understand and operate networking protocols on a very large-scale and in

heterogeneous deployment contexts. Three reasons why simulating the large-scale

networks is difficult are: scale, heterogeneity and rapid change. Though tools like

ns-2 and SSFnet are popular for small-scale performance analysis, combined with

testbed facilities like Emulab and Planetlab, we believe that rapid performance

analysis on the large-scale will require scalable simulation combined with meta-

simulation tools for large-scale experiment design and empirical modeling of protocol

behavior.

Because of the size and scope of such large networks as the Internet or corpo-

rate WANs, introducing new network protocols or configurations can be problematic.

Problems may arise resulting from unanticipated feature interactions. Simulation

plays a crucial role in allowing network engineers to conduct trial and error experi-

ments with new protocols and configurations prior to deployment. Meta-simulation

goes a step further by providing a framework for identifying the greater issues that

arise from the interactions between new and old technologies. Meta-simulation is

built on top of simulation experimentation by creating designs of experiments which

lead to more complex problem solving.

Simulation forms the basis for testing and development of new network tech-

nologies. But simulation has been hampered by a lack of scalability. Simulation of

large scale networks may require simulating tens of thousands to millions of separate

1
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computers running multiple applications and protocols. Because of their size, these

networks are rarely statically defined. Rather, they are ever changing, suffering

from hardware failures, protocol malfunctions and physical link outages. Scaling

the simulation experiment is only one dimension of the problem; beyond scale, we

also require models of the dynamic nature of such large-scale networks. Recent work

in network simulation has focused generally on scale while neglecting rapid change.

Typical models executing in polynomial memory often experience exponential in-

creases in memory consumption when rapid change is modeled.

Beyond simulation, we also require tools for understanding the complex nature

of large-scale networks from a high level viewpoint. Determining convergence rates,

throughput, link congestion and packet delays and network layer reachability infor-

mation are all typical examples of performance metrics. Beyond measurement of

these metrics, a more detailed analysis includes the degree to which certain network

protocol parameters have on these effects. In addition to basic parameter effects,

we would also like to characterize the effects between parameters across protocols

and applications.

We have developed an experimentation platform called “ROSS.Net” to solve

many of these problems. ROSS.Net enables, in the area of simulation modeling, (i)

an optimistic parallel simulation engine that leverages memory-efficient reversible

computation instead of using traditional state-saving to support rollback recovery

(ii) systemic memory-efficient methodology for model construction using a combi-

nation of library interfaces to key data structure algorithms. The end goal is for a

researcher to combine topology, parameter configuration information and selectively

compose a set of experiments that execute space and time efficient models resulting

in accurate answers to the questions posed by the model designer.

To address the problems of interpretation of results, we developed large-scale

experiment design tools that allowed us to model and optimize protocol response.

In general the protocol response is a function of a large vector of parameters, i.e., is

a response surface in a large-dimensional parameter space. We utilize recent work

at Rensselaer on an efficient search algorithm (called Recursive Random Search) for

large-dimensional parameter optimization. The result of this work will include a
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unified search, optimization and modeling framework with demonstrated ability to

pose meaningful large-scale design questions and provide ”good” models rapidly.

The overall goal is to provide tools that dramatically improve the way we

study network protocols. The platform is capable of simulating full protocol and

packet-level dynamics of large networks on commodity uni-processor or multiproces-

sor hardware.

Fundamental contributions are made in two major areas: scalable simulation

and large-scale experiment design. This work also has an immediate impact in appli-

cations broadly in the area of computer systems where large-scale design is important

(eg: operating systems, distributed systems, computer architecture). However, we

also anticipate impact in areas far from computer networking. For example, the

large-scale experiment design methodologies could be applied to areas as diverse as

industrial quality control, agriculture, protein folding (bioinformatics) and theoret-

ical computer science. These future applications stem from the fast-approximation

and modeling features of our methods. We note that this thesis confines its scope

to only the computer network domain.

1.2 Contributions

Three major contributions are presented in this thesis. Each contribution

completes a major step forward towards the dual goals of scalable network simulation

and large-scale experiment design and analysis. These goals address the larger aims

of scale, heterogeneity and rapid change.

The first contribution is in the area of large-scale experiment design and

analysis or, meta-simulation. This contribution provides an analysis tool, called

ROSS.Net, which systematically formulates and organizes multiple simulation ex-

periments in the quest of the general invariant relationships between parameters and

protocol performance response. ROSS.Net brings together the four main areas of

network research: simulation, protocol design, network modeling and measurement,

and experiment design. ROSS.Net aims to provide “good” results fast.

ROSS.Net is built upon the second major contribution of this thesis, ROSS:

Rensselaer’s Optimistic Simulation System. ROSS demonstrates for the first time
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that stable, highly-efficient execution using little memory above what the sequential

model would require is possible for low-event granularity simulation models. The

driving force behind these high-performance and low memory utilization results is

the coupling of an efficient pointer-based implementation framework, Fujimoto’s

fast GVT algorithm for shared memory multiprocessors, reverse computation and

the introduction of Kernel Processes (KPs). KPs lower fossil collection overheads

by aggregating processed event lists. This aspect allows fossil collection to be done

with greater frequency, thus lowering the overall memory necessary to sustain stable,

efficient parallel execution. These characteristics make ROSS an ideal system for

use in large-scale networking simulation models.

The third major contribution introduces a new distributed GVT implemented

within ROSS, affectionately named the Seven O’Clock GVT algorithm. We for-

malize the idea of a network atomic operation (NAO), which enables a zero-cost

cut mechanism which greatly simplifies GVT computations in a cluster comput-

ing environment. We demonstrate its reduced complexity by extending Fujimoto’s

shared memory algorithm to operate distributed across a cluster of shared-memory

multiprocessors.

1.3 Thesis Outline

The thesis is structured as follows:

Chapter 2 illustrates the background of large-scale experiment design and net-

work simulation research which in turn introduces the background for this thesis.

An overview of experiment design and black-box optimization is given. Also, an

overview of current work in network modeling and simulation is given. This is

followed by an assessment of current research and concludes with a discussion in

network protocol feature interactions.

Chapter 3 presents the design and implementation of meta-simulation tool,

called ROSS.Net. ROSS.Net allows network researchers to flexible study the per-

formance of different network protocols and topologies within a meta-simulation

framework. ROSS.Net allows researchers to quantitatively and qualitatively ana-

lyze large-scale, dynamic networks. Within this framework is the flexible protocol
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subscription model which allows for multiple levels of scalability.

Chapter 4 introduces a major sub-component of the ROSS.Net tool, Rensse-

laer’s Optimistic Simulation System (ROSS). ROSS is a parallel and distribution

discrete event simulator which enables the large scale modeling and simulation of

logical processes. The goal of this system is to derive as much performance as is

possible from commodity (off the shelf) computing equipment. ROSS is a high

performance simulator because of its modular design and minimal use of memory.

Specifically we focus on the creation of Kernel Processes (KPs) to facilitate fossil

collection while introducing a minimum of rollback overhead. The chapter concludes

with a performance study which illustrates the efficiency of the design.

Chapter 5 presents a new global virtual time (GVT) algorithm called the

Seven O’clock algorithm. This algorithm is unique because it is creates a sequen-

tially consistent distributed memory model based on the synchronization of CPU

cycle counters. This synchronization is then used to formulate the generalization

of a Network Atomic Operation (NAO). The Seven O’clock algorithm utilizes an

NAO to create a zero-cost consistent cut when synchronizing the parallel and dis-

tributed simulation system. This chapter concludes with a performance study of

the algorithm which demonstrates the efficiency of the algorithm.

Chapter 6 summarizes the current work and provides conclusions for this re-

search.



CHAPTER 2

Historical Review

2.1 Meta-Simulation: Large-Scale Experiment Design, Heuris-

tic Optimization and Empirical Protocol Modeling

(a) Experiment design in ROSS.Net. (b) Multi-Abstraction paradigm of ROSS.Net.

Figure 2.1: ROSS.Net Modeling and Simulation Concepts.

Scaling the simulation platform (described later) is just one dimension of our

research. Recall that, beyond mere scaling of simulation platforms, we need meta-

simulation capabilities to extract and interpret meaningful performance data from

the results of multiple simulations (see Figure 2.1-a). However, there has been

little attention by the networking research community on this important space of

meta-simulation, i.e., choosing experiments, developing useful interpretations and

protocol performance modeling. The purpose of large-scale experiment design is to

systematically formulate and organize multiple simulation experiments in the quest

of the general invariant relationships between parameters and protocol performance

response, and models of protocol behavior in large-dimensional parameter state

spaces.

2.1.1 Experiment Design and Empirical Models

Design of Experiments or “experiment design” is a well known branch of per-

formance analysis, specifically, a sub-branch of statistics [4, 11]. It has been used

6
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extensively in areas like agriculture, industrial process design and quality control

[11], and has been introduced to the area of practical computer and network systems

design by Raj Jain [4]. Statistical experiment design views the system-under-test

as a black-box that transforms input parameters to output metrics. The goal of

experiment design is to maximally characterize/model (i.e., obtain maximum infor-

mation about) the black-box with the minimum number of experiments. Another

goal is robust empirical performance modeling, i.e., one that is minimally affected by

external sources of variability and uncontrollable parameters, and can be specified

at a level of confidence.

The underlying premise of experiment design is that each experiment (eg: a

simulation run, or an Emulab [24], Planetlab [25] test run) has a non-negligible

cost. Moreover, the output (i.e., response) corresponding to a vector of parameters

in general will have an unknown surface topology, also known as ”response surface”.

The goal of empirical modeling and experiment design is to choose a minimum

number experiments to sample and find a curve fitting the unknown response surface.

Observe that there are two levels of uncertainty in this problem: a) discover where

to sample in the unknown response surface and b) how to best fit a model to the

samples that is also representative of the original response surface.

Simple designs like “best-guess” or “one-factor-at-a-time” designs are less fa-

vored in complex situations since they do not provide information about the response

effects of the interactions between parameters. The next step is to consider mod-

els that consider linear parameter interactions (i.e., assume a linear model struc-

ture). Designs like full-factorial (eg: 2n) and fractional factorial (eg: 2n−p) (also

called orthogonal designs), appropriately subjected to replication, randomization

and blocking fall in this category and are preferred to simple one-factor-at-a-time

designs [4, 11]. The usual end-goal of formulating regression models is to efficiently

(i.e., with a minimum number of experiments) observe the effects of both individual

parameters and linear parameter interactions [4, 11]. Techniques like blocking and

analysis of covariance are used to explicitly handle measurable, but uncontrollable

(a.k.a. “nuisance”) factors [11]. Transforms on data (eg: Box-Cox power-law family

of transformations) can effectively aid in producing a family of non-linear regression
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models and stabilizing the variance of the response [4, 11].

If the underlying response structure is not linear, one approach is to build

lower-order models built with fractional factorial experiments to reach interesting

areas where more detailed (higher-order) modeling is done. Well-known small-

polynomial-order response surface methods include central composite design (CCD)

(i.e., efficient fitting of second order models), Box-Behnken designs (Chapter 11 of

[11]). Robust parameter designs (RPDs) for finding settings for controllable vari-

ables that minimized the variability transmitted to the response from uncontrolled

(or noise-) variables have been proposed by Taguchi [29], that have been credited

for triggering a quality-control revolution in the 1980s-90s [11]. Taguchi’s RPDs

use highly fractionated factorial designs and other fractional designs obtained from

orthogonal arrays.

Unfortunately conventional experiment designs do not scale to very large pa-

rameter state spaces. Like the area of large-scale data mining, we run into the so

called “curse of dimensionality” [30], i.e., a hyperspace that becomes prohibitively

large to be sampled (and hence modeled) at fine granularity. For example: model-

ing the performance behavior of intra-domain and inter-domain traffic flows given

the settings of hundreds of BGP parameters and OSPF link weights. We have to

settle for “sparse empirical models” that sample at finer granularity only in selected

regions of the state space that are discovered to be “interesting” according to a

pre-specified set of metrics.

2.1.2 Heuristic Problem Solving and Black-Box Optimization Approaches

A step weaker than empirical modeling (i.e., developing input-output regres-

sion models) is optimization, i.e., to determine the region of the parameter state

space that leads to the “best” performance response. Since the response surface is

unknown, this question falls into the broad area of systematic, heuristic problem

solving [31]. The main issues in problem solving involves developing an understand-

ing of the difficulty of a problem: size of the search space, accuracy and ease of the

evaluation function, and the nature of the problem constraints.

The generalization of the response surface optimization is called black-box op-
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timization using heuristic search methods. In particular, a variety of network pa-

rameter optimization questions can be mathematically formulated (assuming mini-

mization) and solved by such techniques. For example, given a real-valued objective

function f : Rn → R, find a global minimum x∗,

x∗ = arg min
x∈D

f(x) (2.1)

where x is the parameter vector to be optimized, D is the parameter space,

usually a compact set in Rn. In these problems, the objective function f(x) is often

analytically unknown and the function evaluation can only be achieved through

computer simulation or other indirect ways. This type of problems are hence called

“black-box” optimization problems where the objective function is modeled as a

black-box.

Since little a priori knowledge is assumed, these black-box optimization prob-

lems are considered very hard to solve. In addition, since the objective functions

are often non-linear and multi-modal, this type of optimization are also called global

optimization in contrast to local optimization which has only one single extreme

in f(x) and is much easier to solve. Most of black-box optimization problems are

NP-hard and can only be solved for near-optimal solutions with heuristic search

algorithms. In this class of methods, a variety of “exploration” techniques replace

the explicit lower-order modeling mentioned in the prior paragraph. In regions of

interest, a local “exploitation” technique is used to find the local extrema.

Many heuristic evolutionary search algorithms have been proposed and demon-

strated to be very successful in practice, such as, multi-start hill-climbing [33], ge-

netic/evolutionary algorithms [34] and simulated annealing [35]. However, there has

been no consistent report on their performance. In fact, the No Free Lunch Theorem

[36, 37] has theoretically demonstrated that no matter what performance metric is

used, no single optimization algorithm can consistently perform better in all prob-

lem classes than the others. The average performance of any algorithm is the same

over all classes of problems; though there might exist algorithms that perform very

well for a large number of classes. In other words, there exists no general all-purpose

optimization algorithm. For one specific class of problems, its inherent properties
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have to be carefully investigated to perform efficient optimization.

2.1.2.1 RRS: Random Recursive Search

R
R

R R

C C2

2 3
4

1

1

Parameter Space

Figure 2.2: RRS’ shrink-and-realign process on a 2D parameter space.

Tao Ye and Shivkumar Kalyanmaraman have co-designed a new heuristic

search algorithm, Recursive Random Search (RRS) [12], for large-scale network

parameter optimization, is based on the initial high-efficiency feature of random

sampling (i.e., the results of random sampling improves rapidly during early sam-

ples). RRS maintains this initial high-efficiency feature by constantly restarting

random sampling with adjusted (i.e., re-scaled) sample spaces. In the “explore”

phase, RRS takes N samples (N depends upon a confidence level, eg: 95%) and

then successively restarts and rescales the search in the vicinity of the best found

result (“exploit” phase) to zoom in to find a local optimum. As shown in Figure

2.2, the best local optimum is then used with future randomized “explore” sam-

ples to decide where to re-scale (i.e., exploit) and look for new local optima. The

RRS algorithm outperformed traditional search techniques in various benchmarks

and has been successfully applied in multiple network management situations using

on-line simulation (eg: OSPF, BGP, RED as reported in [12]). For instance, RRS

is tested on Schwefel function (which is shown in Figure 2.3-a), and outperformed

techniques like Multi-start Pattern Search and Controlled Random Search as shown

in Figure 2.3-b. The figures show the average improvement (over several runs, with

tight confidence intervals) in the best local optima (i.e., lowest metric value) found

as a function of the cumulative number of experiments consumed.
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Figure 2.3: Recursive Random Search (RRS) tests on Schwefel function.

Besides the high efficiency in large-dimensional parameter spaces, the RRS

algorithm is robust to the effect of random noise in the objective function because

of its basis in random sampling and it is able to automatically exclude negligible

parameters from the optimization process. These features are very important for

the efficient optimization of network protocol configuration.

2.2 ROSS.Net Network Modeling & Simulation Platform

Currently, the networking research community has developed a number of

modeling and simulation research projects. Current platforms include SSFNet [7],

DaSSF [38], JavaSIM [39], Ns [40] and GloMoSim [8]. There are also inter-

operability platforms such as PDNS/Backplane [41] and Genesis [42] which com-

bines these existing platforms for the purpose of “model reuse” as well as to en-

able scalability through distributed execution. Similarly, the “staged” simulation

approach (SNS) [43], attempts to reuse computation in the domain of wireless net-

works. In wired networks, queuing statistics are the predominate computation and

not radio interference calculations. Thus, because a queue can change in unpre-

dictable ways, we do not believe this technique will be generally applicable in this

domain. So then what else is lacking in these platforms? Our answer to that ques-

tion suggests that the current state-of-the-art in sequential, parallel or distributed

platforms fails to address scalability in the following dimensions.



12

-1500

-1000

-500

 0

 500

 1000

 1500

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200  0

Sparse Model with 50 Samples

-1500

-1000

-500

 0

 500

 1000

 1500

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200  0

Sparse Model with 100 Samples

(a) The sparse model with 50 samples. (b) The sparse model with 100 samples.

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200  0

Sparse Model with 200 Samples

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200  0

The Ideal Model from Schwefel Function

(c) The sparse model with 200 samples. (d) The ideal model, Schwefel function

Figure 2.4: An illustration (not done by RRS) of sparse model develop-
ment for a Schwefel objective function: The sparse model
improves as the number samples from the search space in-
creases. In particular, the regions of interest improves first.
In the 100-samples case, the most important region around -
1800 improves while the less important regions (like the peaks
around -1500 and -1150) show no improvement.

1. Memory Efficient Parallel Models: It was report by Nicol in [44], that

Ns consumes 93 KB per TCP connection, SSFNet (Java version) consumes

53 KB, JavaSim consumes 22 KB per connection and SSFNet (C++ version)

consumes 18 KB for a “dumbbell” model which contains only two routers.

Router states in models such as OSPF and BGP are significantly larger than

for a single TCP connection. Thus, to support million node topologies, super-

computer size addresses spaces are required to execute large-scale within these

platforms.

2. Scalable Performance Under Realistic Topologies: While realistic In-

ternet topologies are being used, to date it has not been shown that existing

platforms are able to scale when real scenarios are used. For example, rout-

ing stability studies require the model to dynamically modify the large-scale
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network topology (i.e., greater than 1 million nodes) as a consequence of link

failures, denial of service attacks or router reboots. Current sequential plat-

forms, such as Ns and JavaSim, cannot execute models much larger than few

thousand nodes [44]. The current approaches to parallel execution, such as

SSFNet, and DaSSF are tied to the underlying static topology structure. The

reason for this is because these algorithms exploit the latency of links as part

of the synchronization algorithm. The minimum latency defines the extent to

which model parallelism can be exploited. Thus, as links go down these par-

allel approaches must either block and be readjusted to exclude those failed

links in order to obtain optimal synchronization overheads or execute assum-

ing those links are available but at the expense of unnecessary synchronization

overheads. In either case, it is unclear how these approaches will scale under

dynamic changes in topology.

3. Flexible Subscription of Model Components: Current modeling plat-

forms export a static model hierarchy which conforms to the precise specifi-

cation of application and or protocols including all sub-layers. For example,

within Ns, a TCP model will consist of a host abstraction, session abstraction

(both receiver and sender sides) as well as an IP layer. While these layers are

necessary for emulations, a large-scale simulation does not need all of these

abstractions and layers to produce a statistically valid result. Consequently,

the static hierarchy results in models that are significantly more heavy weight

and fundamentally less scalable.

More recent approaches include hybrid fluid flow models [22] which allow a

far greater amount of background TCP traffic. But these models suffer from

an unbounded error rate and cannot be reliably used when performing search

optimizations. Typically search optimizations require little or no error in order

to generate non-random results, i.e., the “black-box” optimization must be

deterministic.
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2.2.1 Current Research in Network Modeling & Simulation

We are leading an effort to understand the performance limits of an advanced

parallel and distributed discrete-event simulation system. This study is conducted

in the context of large-scale network models. In these models, the network elements

(i.e., hosts and routers/switches) are divided into a collection of logical processes

(LPs). These LPs communicate by exchanging timestamp events messages. Such a

message is used to denote the “arrival” of a packet at a router or switch element.

The crucial issue when executing such a model in parallel is ensure that all

events are processed in timestamp order. To deal with this synchronization prob-

lem there are largely two classes of approaches: conservative and optimistic. In the

context of network models, conservative approaches either barrier synchronize LPs

at well defined points in simulated time, exploit the “slack time” between LPs [7]

or some combination of two [38]. The synchronization frequency (either barrier

or “slack time” based) is derived using the minimum network propagation delay

from an incoming link to a host/router node. Thus, as previous noted, all conserv-

ative techniques must leverage precise topology structure in order to achieve good

performance. Should that structure change, then unnecessary overheads can result.

In our current research, we take a radically different approach which is based

on the speculative or optimistic processing of events. Here, processors execute

LP events locally in timestamp order. However, should an event from another

LP/processor arrive in the destination LP’s past, the LP will rollback and “undo”

any changes made to its state. Traditionally, the undo operation has been sup-

ported by state-saving. Here, an LP will make either a complete or partial copy of

state variables as each event is processed and restore the correct version of state in

simulated time by rolling back.

The key advantage of an optimistic approach is that it operates in-

dependent of the underlying network topology. Thus, it continues to exploit

all the available parallelism even during dynamic changes in topology. However,

previously the caveat has been that state-saving overheads dominate the computa-

tion costs resulting in little or no increase in performance as compared to sequential

model execution [45, 46]. To address this problem, we are utilizing a new approach



15

called reverse computation for realizing the undo operation. Under reverse com-

putation, the roll back mechanism in the optimistic simulator is realized not by

classic state-saving, but by literally allowing to the greatest possible extent events

to execute backward. Thus, as models are developed for parallel execution, both

the forward and reverse execution code must be written.

2.2.2 Network Protocol Feature Interactions

Analysis of interactions between inter- and intra-domain routing protocols has

been an attractive research topic. In [118], through analysis of data from AT&T’s

BGP and OSPF traffic measurements, authors showed that majority of BGP updates

are because of Hot Potato decision-making practices of ISPs. The major challenge

they faced in their analysis was to properly classify Hot Potato BGP updates from

the other updates as well as to accurately match internal OSPF link changes as trig-

gering events to external BGP updates. Through a time-based matching algorithm,

they counted BGP updates attributable to Hot Potato effects in the ISP’s OSPF

network. The main difference in our work is that we do not need any matching or

estimation technique to determine OSPF-caused BGP updates or vice versa. Since

our large-scale simulation environment is fully controlled, we can easily trace the

causes of updates.

In [119], as a follow-up to their previous work [118], authors modeled sensitivity

of BGP (and the network in general) to IGP-caused Hot Potato changes. When

building an analytical model for analyzing effects of intra-domain Hot Potato routing

changes on inter-domain routing, the authors got inspired by multidimensional data

analysis of database systems. More specifically, they modeled BGP’s sensitivity to

IGP changes by considering all possible IGP changes on a data cube with three

dimensions: (i) IP prefixes, (ii) network changes – a particular type of change such

as link failure or link weight change, and (iii) locations – the router where the change

happened. An element of the cube is set if the corresponding egress point for the

IP prefix changes in response to the associated network change at the associated

router. Similar to our work, this type of data analysis is indeed another way of

expressing all possible parameters that we use in the experiment design framework.
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The bottom line is to enumerate all possible Hot Potato IGP changes to perform

BGP analysis.

Another major work on analysis of OSPF and BGP interactions was presented

in [120]. In contrast to the research direction on analyzing effects of intra-domain

changes on inter-domain routing as in [118, 119], the main goal of the work in [120]

was to determine if BGP dynamics effect intra-domain routing behavior and in turn

effect the traffic engineering of it. The main motivation was to identify if traffic

matrix (which is a fundamental component for intra-domain traffic engineering) is

affected by BGP updates. The authors considered size of the traffic shifts, in addi-

tion to the count of correlated OSPF and BGP updates. They used measurement

data from Sprint’s BGP routers, e.g. they observed 133 updates/minute for the

BGP routing tables of Sprint. An interesting observation they have made is that,

compared to the total traffic, the amount of volume shift because of BGP updates

is very small. Also, they found that BGP updates are not distributed evenly across

the routing table, i.e., IP prefixes. Rather, they observed that longer prefixes (i.e.,

smaller ASes) receive more of the BGP updates. Similarly, they showed that ele-

phants (or heavy-hitter long traffic flows) are disturbed less than mice from BGP

updates.



17

10M

10M

r1

r3

r2

RED

RED

10M 100M
r4

RED

100M

100M

TCP sources

TCP sinks

TCP sources

RED

...
...

...
...

...
...

On−line simulator start

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
time(in seconds)

cov of goodput
average

(a) Linux testbed topology with RED queues. (b) Optimization of RED’s goodput.

Drop Rate

0

0.02
Queue Weight 0

0.2

Maxiumum Drop Probability

0.015
0.016
0.017
0.018
0.019

0.02
0.021
0.022

Drop Rate

(c) RED’s empirical objective function.

Figure 2.5: Adaptive tuning of RED parameters with experiment design.



CHAPTER 3

Meta-Simulation: Large-Scale Experiment Design and

Analysis

In this chapter we introduce ROSS.Net. We conduct a case study of the OSPFv2

network protocol and investigate interactions between OSPFv2 and the BGP4 net-

work protocols. Our example network focused on AT&T’s North American network,

which we considered as a single OSPF area containing over 11,000 routers. We com-

pute a full factorial design of experiments that characterizes a great deal of the

model space. We compare this with the model generated by the Random Recursive

Search (RRS) algorithm. The results of our comparison emphasize RRS’s ability to

generate good results fast by reducing the number of experiments collected from over

16,000 to 750 with a variance of only 7% in the response plane local minima. We

illustrate how, by using ROSS.Net, we were able to compute a critical path analysis

of the OSPF network which leads to a 100-fold improvement in the sampling rate.

In our investigation of BGP and OSPF interactions the example network is

expanded to 5 small autonomous systems with OSPF as the intra-domain protocol,

and BGP as the inter-domain protocol. We define interactions between the two as a

correspondence of the effects between the two domains. For example, if a link fails

within an AS, does this cause a shift in the reachability information between ASes,

and vice versa.

3.1 Experiment Design and Analysis

Performance analysis techniques are fundamental to the process of protocol de-

sign and network operations [4, 5, 6]. The high-level motivation of these techniques

is simple: to gain varying degrees of qualitative and quantitative understanding of

the behavior of a system under-test. A number of specific lower-level objectives in-

clude: validation of protocol design and performance for a wide range of parameter

values (parameter sensitivity), understanding of protocol stability and dynamics,

and studying feature interactions between protocols. Broadly, we may summarize

18



19

the objective as a quest for general invariant relationships between network para-

meters and protocol dynamics [4, 5, 28].

Systematic design-of-experiments [4, 11] is a well studied area of statistics and

performance analysis offering guidance in this aspect. A survey of relevant papers

in the networking field suggests that such systematic techniques (e.g.: factorial

designs, large-scale search) have not been used in the protocol design process or

network operations process except possibly by measurement specialists. This ad-

hoc approach to organizing simulation or test-bed experiments has worked when we

design and examine a small number of features, network scenarios and parameter

settings. However, this method is likely to be untenable as we design newer protocols

that will rapidly be deployed on a large-scale, or have to deal with a combinatorial

explosion of feature interactions in large operational inter-networks. The need for

scalable simulation and meta-simulation tools is implicit in Floyd [6]’s statement:

“...we can’t simulate networks of that size (global Internet). And even if we could

scale, we would not have the proper tools to interpret the results effectively...”

Beyond mere scaling of simulation platforms, our next need is meta-simulation

capabilities, i.e., large-scale experiment design. Statistical experiment design con-

siders the system-under-test as a black-box that transforms input parameters to

output metrics. The goal of experiment design is to maximally characterize the

black-box with the minimum number of experiments. Another goal is robust char-

acterization, i.e., one that is minimally affected by external sources of variability

and uncontrollable parameters, and can be specified at a level of confidence. Be-

yond characterization, the methodology aims to optimize the system, i.e., allows

one to find the appropriate input parameter vector that elicits the best output re-

sponse. The underlying premise of experiment design is that each experiment (e.g.:

a simulation run) has a non-negligible cost.

While regression models for small dimensional parameter spaces can be built

using simple factorial methods [4, 11], these methods do not ramp up to large-scale

situations. Usually as the size of a model is increased in either space or number

of parameters, the modeler typically retreats to a sub-goal of characterization, and

instead focus on optimization alone (a.k.a. black-box optimization). As a result,
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we replace detailed regression-like characterization with heuristic search methods.

In this class of methods, a variety of “exploration” techniques are used to find

regions of interest. For example, hill climbing is used to find the local extrema

[31]. Many heuristic search algorithms have been proposed such as multi-start hill-

climbing [33], genetic algorithms [34] and simulated annealing [35]. While these

techniques tend toward the global optima in the limit, they do not have the property

of finding good results quickly, i.e., they lack early-stage efficiency. We have utilized

an efficient search algorithm (called Recursive Random Search [12]) for efficient

large-dimensional heuristic parameter optimization. This approach thus far has

yield very positive results in finding “good” global minima with few simulation

runs.

Here we apply this meta-simulation technique to examine OSPFv2 convergence

times during network link failures. This study includes OSPF optimizations for

sub-second convergence, adapted from [53]. Here, convergence is defined to be

time at which all routers in the network have a synchronized routing table or put

another way, a consistent view of the routing tables is shared by all routers. We

explore the cases , i.e., large-scale experiment design and black-box optimization

(i.e., large-dimensional parameter state space search) using realistic topologies with

bandwidth and delay metrics to analyze convergence of network route paths in the

Open Shortest Path First (OSPFv2) protocol.

By using Recursive Random Search (RRS) approach to design of

experiments, we find: (i) that the number of simulation experiments that

must be run is reduced by an order of magnitude when compared to full-

factorial design approach, (ii) it allowed the elimination of unnecessary

parameters, and (iii) it enabled the rapid understanding of key parameter

interactions. From this design of experiment approach, we were able to abstract

away large portions of the OSPF model that result in a 100 fold improvement in

simulation execution time.

The purpose of the large-scale experiment design area of our research is to

systematically formulate and organize multiple simulation experiments in the quest

of the general invariant relationships between parameters and protocol performance
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response. To this end, we being the discussion with an overview of full-factorial

design of experiments.

3.2 Overview of Full-Factorial Design of Experiments

Design of Experiments or ”experiment design” is a well known branch of per-

formance analysis, specifically, a sub branch of statistics [4, 11]. It has been used

extensively in areas such as agriculture, industrial process design and quality control

[11] , and has been introduced to the area of practical computer and network systems

design by Jain [4]. Statistical experiment design views the system-under-test as a

black-box that transforms input parameters to output metrics. The goal of experi-

ment design is to maximally characterize (i.e., obtain maximum information about)

the black-box with the minimum number of experiments. Another goal is robust

characterization, i.e., one that is minimally affected by external sources of variability

and uncontrollable parameters, and can be specified at a level of confidence.

The underlying premise of experiment design is that each experiment has a

non-negligible cost. Simple designs like ”best-guess” or ”one-factor-at-a-time” de-

signs are less favored in complex situations since they do not provide information

about the interactions between parameters. Designs like full-factorial and fractional

factorial (also called orthogonal designs), appropriately subjected to replication,

randomization and blocking are preferred [4, 11]. The usual end-goal of formulating

regression models is to observe the effects of both individual parameters and para-

meter interactions [4, 11]. Techniques like blocking and analysis of covariance are

used to explicitly handle measurable, but uncontrollable (a.k.a. ”nuisance”) factors.

Transforms on data (e.g., Box-Cox power-law family of transformations) can effec-

tively aid in producing a family of non-linear regression models and stabilizing the

variance of the response [4, 11].

The next step beyond characterization (i.e., developing input-output regression

models) is optimization, i.e., to determine the region in the important factors that

leads to best-possible response. The output (i.e., response) in general will have

an unknown surface topology, also known as ”response surface” 1. The approach

1An example response surface is shown in Figure 3.1
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Figure 3.1: The benchmark Schwefel function as the response surface for
a parameter space.

typically used involves quickly traversing the surface sequentially (by using lower-

order models built with fractional factorial experiments) to reach interesting areas

where more detailed (higher-order) characterization is done.

One of the significant drawbacks of the full-factorial approach is the exponen-

tial in the number of experiments that must be run as a function of the number of

data points per parameter. To vastly reduce the number, search algorithms must

be used, such as RRS.

3.3 ROSS.Net

Shown in Figure 3.2, ROSS.Net aims to bring together four major areas of net-

working research: simulation, protocol design, network modeling and measurement

and experiment design. For simulation, at the heart of ROSS.Net is Rensselaer’s

Optimistic Simulation System (ROSS). ROSS is a discrete event, parallel execution

simulation engine that is extremely modular and scalable. Running on top of ROSS

is the ROSS.Net simulation model. The ROSS.Net simulation model imposes lay-
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Figure 3.2: ROSS.Net and other major experimentation areas. ROSS
stands for Rensselaer’s Optimistic Simulation System.

ering constraints on the protocol models, performs the multiplexing operation on

streams, and provides an API interface for inter-layer communications. ROSS.Net

incorporates a collection of protocol libraries (e.g.: OSPFv2, TCP, UDP, Multicast,

etc). It allows for protocol designers to create and examine new and incremental

designs within an existing framework of network protocols. We have successfully

simulated tens of thousands of OSPFv2 routers [54], tens of thousands of multicast

receivers [55], and over a million TCP hosts [47].

ROSS.Net simplifies tasks such as traffic modeling and real topological repre-

sentation through the use of XML interfaces. Two of the major input parameters

to experiments are the topology description and the traffic scenario. These in-

puts describe additional parameters which control the working nature of protocols,

connections, flows, and other various network elements. Our XML schema is an

application independent means for describing these inputs and are reusable across

multiple meta-simulation systems.

The design of experiments tool (DOT) is a new component which allows for

investigators to specify the type of experiment design to generate. This builds on

the previous work of the Unified Search Framework (USF) [56]. USF was designed

to handle large-scale black-box optimizations. USF provides a general platform

on which tailored optimization algorithms can be easily constructed. USF contains

different sampling methods as basic building blocks, and creates the search algorithm
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though the management of these methods. USF and ROSS.Net together allow us

to take advantage of the search algorithms and large-scale network simulations and

from them generate an optimized design of experiments tool, the DOT.

The DOT configures and executes the ROSS.Net core with the specified XML

input parameter descriptors, simulator engine performance parameters, and protocol

dependent parameters and executes the selected search algorithm(s) such as random

recursive search, multi-start, or complete random sampling [12].

3.4 The OSPFv2 Design of Experiments

The goal of our design of experiments was to understand the factors determin-

ing the amount of wall-clock time required for a network of routers to detect and

propagate a link state failure. Our experiment is a simulation of a network of Inter-

net routers all operating the OSPFv2 protocol as described in [58]. For an example

router network, we selected the AT&T network, as described by Rocketfuel data

[52]. This network description was determined by using various network probing

techniques (i.e, traceroute). The AT&T network is challenging because of it’s size

and complexity.

3.4.1 OSPFv2

OSPFv2 is a link-state routing protocol designed to be run internal to a single

Autonomous System. Each OSPFv2 router maintains an identical database de-

scribing the internal network’s topology (i.e., an Autonomous System (AS)). From

this database, a routing table is calculated by constructing a shortest-path tree.

OSPFv2 recalculates routes quickly in the face of topological changes, utilizing a

minimum of routing protocol traffic. OSPFv2 is classified as an Interior Gateway

Protocol (IGP). This means that it distributes routing information between routers

belonging to a single Autonomous System. An example of an Autonomous System

is the AT&T network, which is AS number 7018. Routing between ASs is handled

by an external protocol, such as Border Gateway Protocol (BGP) [59].

The OSPFv2 protocol is based on link-state or shortest-path-first (SPF) tech-

nology. In a link-state routing protocol, each router maintains a database describing
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the Autonomous System’s topology. This database is referred to as the link-state

database. Each participating router has an identical database. Each individual

piece of this database is a particular router’s local state (e.g., the router’s usable in-

terfaces and reachable neighbors). The router distributes its local state throughout

the Autonomous System via flooding. All routers run the exact same algorithm,

in parallel. From the link-state database, each router constructs a tree of shortest

paths with itself as the root. This shortest-path tree gives the route to each destina-

tion in the Autonomous System [58]. OSPFv2 routers employ the HELLO protocol

for establishing and maintaining communications with adjacent routers. Adjacen-

cies are established between two routers when a HELLO protocol packet is received

by one of the two routers connected by a link. HELLO packets are then sent at

regular intervals between adjacent routers. Upon receiving a HELLO packet from

a neighboring router, an inactivity timer is set for that router. If another HELLO

packet is not received from that router before the timer expires, then the adjacency

is broken and that router should no longer be used to route IP packets.

All of these aspects are modeled in ROSS.Net. However, multiple areas within

a single OSPF domain is not currently modeled. In the experiments presented here,

we configure OSPF to be a single large area. This was done because there is an

interest in determining where OSPF ceases to execute in an efficient manner. This

was a sub-goal of our experimentation.

3.4.2 AT&T Network Topology

For our network topology we selected the AT&T network. Figure 3.3 shows

the core AT&T network topology which contains 11,964 router nodes and 7,491

links. Internet topologies like the AT&T network are interesting from a modeling

prospective because of their sparseness and power-law structure [52]. This struc-

ture allows for a greater range of convergence times compared to fully connected

networks. The OSPFv2 update packets require multiple hops in order to reach the

outer edges of the network.

In performing a breadth-first-search of the AT&T topology, there are eight

distinct levels. A number of routers were not directly reachable and thus were
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Figure 3.3: AT&T Network Topology (AS 7118) from the Rocketfuel
data bank for the continental US. In our initial work, we
have simulated TCP and OSPF protocols over this large-scale
topology.

removed. Those routers are likely connected by transit routes. In total there are

3,371 backbone routers and at the successive levels there are 8,593 routers. The 4

ms delay that was chosen for the backbone core routers was in-line with the delays

that Rocketfuel had associated with the Telstra topology backbone. An order of

magnitude higher delay was selected for all lower level routers.

The bandwidth and delay for the AT&T topology is as follows:

• Levels 0 and 1 routers: 155 Mb/sec and 4 ms delay

• Levels 2 and 3 routers: 45 Mb/sec and 4 ms delay

• Levels 4 and 5 routers: 1.5 Mb/sec and 10 ms delay

• Levels 6 and 7 routers: 0.5 Mb/sec and 10 ms delay

Our experiments focused on the convergence time metric. We defined conver-

gence to be the time at which all routers on the network have received an update

corresponding to a link status change, and have recomputed their forwarding tables.

In order to clearly state convergence intervals, in our simulations we have only a

single link state failure per simulation and all of the OSPFv2 routers were started
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in a converged state. We defined the input plane to this experiment design to be

composed of the HELLO interval, HELLO inactivity interval, SPF computation in-

terval, ACK interval and maximum transmission unit. The response plane is the

convergence time from the link state failure.

The goal for our design of experiments was to adapt some of the convergence

optimizations in [53] for the IS-IS protocol to the OSPFv2 RFC [58] protocol. IS-IS

is a link state protocol for Cisco routers. Suggestions for lowering convergence times

were: to queue HELLO packets in front of data packets, use a modern shortest-

path-first (SPF) algorithm, and to give a higher priority to link state packet (LSP)

propagation over SPF computation. We took the following steps to adapt the opti-

mizations.

We did not model the data plane in our OSPFv2 routers so that HELLO

packets would always be at the front of the queue. It is still possible for other

control plane packets to queue in front of the HELLO packets. To facilitate a

higher priority for link state propagation over SPF computation, we remove the

LSP propagation timer from the OSPFv2 protocol. Now, LSP propagation will

always occur immediately, and the SPF computations will always occur later. In

addition, modern SPF computations would only add a small amount of time to

overall convergence interval. We modeled this by adding in the amount of time

stated by [53] for a topology of our size.

3.4.3 Recursive Random Search Results

As previously discussed, Recursive Random Search (RRS) is a heuristic search

algorithm for black-box optimization problems. This algorithm is specifically de-

signed to optimize dynamic network protocol parameterizations with an emphasis

on obtaining ”good” solutions within a limited time frame. RRS does not attempt

to find a full optimization of the parameter space. The RRS algorithm maintains

the high efficiency property of random sampling by constantly restarting random

sampling but with adjusted parameter spaces. Because it shares this property with

random sampling, it is also highly robust to the effect of random noises in the objec-

tive function. It also performs efficiently when handling an objective function that
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Input Parameter Minimum Value Maximum Value

Hello Interval (seconds) 0.5 10.0
Hello Inactivity Interval (seconds) 1.5 8.0
ACK Timer Interval (seconds) 0.5 10.0
Maximum Transmission Unit (bytes) 500 1500
SPF Computation Interval (seconds) 0.5 10.0

Table 3.1: Random Recursive Search Input Plane.

Residuals

Min 1Q Median 3Q Max
-15.7286 -1.0311 0.1805 1.4811 11.5511

Coefficients

Estimate Std. Error t value Pr(> |t|)
(Intercept) -19.838684 1.547959 -12.816 < 2e− 16
HELLO Packet Interval 4.426648 0.121561 36.415 < 2e− 16
HELLO Inactivity Interval 4.507337 0.169302 26.623 < 2e− 16
ACK Interval 0.089194 0.113251 0.788 0.432
MTU -0.001568 0.001146 -1.368 0.173
SPF Computation Interval 0.717926 0.121500 5.909 1.16e-08

Residual standard error: 4.17 on 243 degrees of freedom
Multiple R-Squared: 0.912, Adjusted R-squared: 0.9102
F-statistic: 503.5 on 5 and 243 DF, p-value: < 2.2e-16

Table 3.2: RRS Linear Regression Model Output generated by R.

contains negligible parameters.

For the recursive random search algorithm we chose a wide range of input

parameters, as shown in Table 3.1. We allowed RRS to search for 250 experiment

runs, specifying a desired confidence level of 99%. RRS generated a convergence

minimum after only 7 executions of 4.07 seconds. We fitted a linear regression

model to our data using a tool called R [60], and generated the co-efficients shown

in Table 3.2. After analyzing the variance on the inputs, we found the parameters

that had the greatest impact on the model to be the HELLO packet interval, HELLO

inactivity timer, and the SPF computation interval.

After considering the simulation model, we realized that the HELLO polling
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interval is set to be the HELLO packet interval multiplied by the HELLO inactivity

interval. These two parameters are have an impact on convergence because they

determine the time to detect a link state failure. The other factor of convergence

time is the time to propagate the link state failure to the remainder of the routers in

the network. The update propagation time is defined by flooding packets throughout

the network. The router which detects the failure informs all of it’s remaining

neighbors, who notify their neighbors, and so on, until eventually all routers in the

network have received the update. The propagation delay on the updates is bounded

by the amount of time it takes for the update to travel across the diameter of the

network. Recall also from our definition of convergence that each router must have

also recomputed their forwarding tables. So the convergence time is compounded

by either how long it takes for the final router to update it’s table, or by the longest

SPF computation interval.
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Figure 3.4: RRS Linear Regression Model Scatter and Q-Q Plots

After analyzing the variance we fitted a new linear regression model to the

SPF computation interval and the cross between the HELLO packet interval and

the HELLO inactivity interval, as shown in Table 3.4. This regression produced an
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Input Parameter Minimum Value Maximum Value

HELLO Packet Interval (seconds) 0.5 10.0
HELLO Inactivity Timer (seconds) 1.5 8.0

Table 3.3: Re-parameterized Random Recursive Search Input Plane

Residuals

Min 1Q Median 3Q Max
-18.6508 -0.6173 0.23916 0.5768 5.3645

Coefficients

Estimate Std. Error t value Pr(> |t|)
(Intercept) -0.31820 0.54756 -0.581 0.5617
HELLO packet Interval -0.19646 0.11229 -1.750 0.0814
HELLO Inactivity Interval 0.13986 0.13361 1.047 0.2962
SPF Computation Interval 1.0743 0.2125 5.055 5.27e-06
HELLO interval × inactivity 0.92009 0.02436 37.773 < 2e− 16

Residual standard error: 1.915 on 245 degrees of freedom
Multiple R-Squared: 0.9853, Adjusted R-squared: 0.9851
F-statistic: 5466 on 3 and 245 DF, p-value: < 2.2e-16

Table 3.4: Re-parameterized Linear Regression Model Output generated
by R

adjusted R-squared value of 98%. In order to verify the accuracy and correctness

in our model we created a scatter plot of the errors versus predicted responses. The

scatter plot did not show any trends in the data. The next step in our verification

was to create a quantile-quantile plot of the residual errors. We observe a linear

relationship between sample error and theoretical. From Figure 3.4, the linear model

assumptions of normality appear to be valid.

In order to gain more detail about the interesting parts of the design, we re-

executed ROSS.Net a second time with only those input parameters. Specifically, we

used only the HELLO packet interval, and the HELLO inactivity interval in the same

ranges as shown in Table 3.3. Again, we allowed RRS to search for 250 iterations

and with a confidence interval of 99%. This experiment generated a convergence

minimum after only 129 executions of 0.93 seconds.
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Re-parameterized Recursive Random Search
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Figure 3.5: Re-parameterized Random Recursive Search. The response
plane with a local optimum toward the smaller input para-
meters.

Input Parameter Minimum Value Maximum Value

HELLO Packet Interval (seconds) 0.03 1.0
HELLO Inactivity Interval (seconds) 1.5 2.0

Table 3.5: Re-scaled Random Recursive Search Input Plane

In this series of experiments, a sub-second range for the convergence interval

is observed. Figure 3.5 shows that the HELLO packet interval and the HELLO

inactivity interval form a plane with one corner tilting downward toward the smaller

values. This low corner is anchored by the best convergence result given by RRS.

We report a clustering effect occurring on the graph, which is attributed to the

RRS algorithm centering upon a given input. It appears that RRS was successful

in isolating the HELLO packet interval and the HELLO inactivity interval at the

low end of their ranges.

The initial goal of our design was to determine if we could adapt some of
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Figure 3.6: Re-scaled Random Recursive Search. The response plane is
tilted at a greater angle as we re-scale the input parameters
by a factor of 10.

Jacobsen’s ideas to the OSPFv2 protocol and achieve convergence times on the order

of magnitude in the tens of milli-seconds. Having isolated the effective parameters

of the simulation model, we being to see points in the sub-second range. So we

re-scaled the experiment into the range of the input values that generated those

results. We noticed that the HELLO packet interval was in the range suggested by

Jacobsen. We reduced the range for the input parameters as shown in Table 3.5

and Figure 3.6 shows the results of this experiment. All of the convergence values

are below a second, and the best values are in range of tens of milli-seconds.

3.4.4 OSPF Model Critical Path Analysis

Berry and Jefferson [61], developed a technique called Critical Path Analysis

to determine the optimal parallel simulation execution time. Armed with the results

from RRS, we apply this technique here to examine what the critical path for OSPF

convergence within the context of our model.
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Experiment HELLO Interval HELLO Inactivity ACK MTU SPF Non-optimized Optimized

1 0.5 1.5 0.5 500 0.5 0.895151 0.895151
2 0.5 4.75 0.5 500 0.5 2.707651 2.707651
3 0.5 8 5.25 1000 10 13.520151 13.520151
4 5.25 1.5 0.5 1000 5.25 9.207651 9.207651
5 5.25 4.75 5.25 1000 0.5 23.488901 23.488901
6 5.25 1.5 10 1000 10 13.957651 13.957651
7 5.25 8 10 1500 10 46.770151 46.770151
8 10 4.75 5.25 1000 0.5 44.270151 44.270151
9 10 4.75 0.5 500 5.25 49.020151 49.020151
10 10 4.75 10 1500 10 53.770151 53.770151

Table 3.6: Validation of Optimization using the VSNL (India) Network
Topology

After examining the results from our designs, we observed that the two main

components of convergence are detection and propagation. Detection is simply the

amount of time that elapses between a link state change and the time at which

the inactivity timer fires. The second component, propagation is determined by

the longest path the link state update travels through the network. The longest

path is not immediately determined by the number of hops between the originating

router and the final router to receive the update. It is possible for an update to take

many hops over high-speed links and still not be on the longest path. Conversely,

it is possible to take only a small number of hops over very low speed links and

be on the longest path. Realizing that these two factors have the highest impact

on convergence time, we observed that to accurately model convergence in

any network, only the set of nodes which encompass the longest path

through the network require simulation. This observation has been used on

other OSPF optimization [62].

Using ROSS.Net, we simulated the AT&T network which contained almost

12,000 routers. The model was instrumented so that each router would keep track

of which routers they received link state updates from. Once the update reached

the final router in the network, we then backtracked this path to find the longest

path in the network.

In order to validate the modeling optimization, we computed a full factorial

design of the VSNL, India topology. This topology contained only 291 routers, which

allowed us to compare the optimization to the full model simulation results. Table

3.6 shows the results of ten of those experiments runs. The optimization results

generated exactly the same output for the optimization as we would have recieved
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had we modeled the entire topology.

Simulations on the full AT&T network required anywhere from one half hour

to initialize to several hours depending on whether the routing tables need o be com-

puted. In addition to the time required to initialize the simulation, execution time

took on average one second of wall clock time to simulate one second of simulated

time. In other words, to simulate an hour of OSPFv2 traffic in ROSS.Net required

almost one hour of real time.

After determining this optimization, we computed the longest paths through

the AT&T network for each of the updates generated from a single link failure.

These paths we 11 and 12 hops long respectively, and the paths only varied at a

single node. This means that in order to simulate the entire AT&T network for

convergence times only required actually simulating 13 total routers. Obviously,

this reduced the time required to run the simulation to the order of seconds. At

this stage, ROSS.Net only takes a second or so to initialize, and on an average

run about 0.0006 seconds to execute. The simulation results presented required

only about 12,000 events to generate the convergence times in a simulation of 100

seconds.

Using this optimized model, we are now able to compare the full-factorial

experiment approach to RRS.

3.4.5 Analysis and Comparison of RRS to Full Factorial

In the previous section we showed how meta-simulation can reduce the amount

of time to acquire meaningful results from our models by employing algorithms such

as Recursive Random Search. Using RRS, we were able to generate all of our results

in only 750 experiments, or simulation executions. However, RRS had not sampled

a large area of the state space, so how confident can we be in the results?

We computed a full factorial model in order to validate the results we gained

using ROSS.Net. We used the same 5 input parameters as in the RRS experiments,

and 7 levels as shown in Table 3.7. In Table 3.8, we fitted a linear regression model

to the data and found that the same three input parameters had the most effect on

the model. The full factorial model produced an adjusted R-squared value of 85%.
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Figure 3.7: Full Factorial Design Scatter and Q-Q Plots

Input Parameter Minimum Value Maximum Value

Hello Interval (seconds) 0.05 10.0
Hello Inactivity Interval (seconds) 1.05 8.0
ACK Timer Interval (seconds) 0.5 5.0
Maximum Transmission Unit (bytes) 500 1500
SPF Computation Interval (seconds) 0.5 5.0

Table 3.7: Full Factorial Model Input Plane

We were confident that RRS was properly modeling the same parameter space as we

would have explored had we done a more detailed full factorial. Plotting the same

two most effective parameters as we modeled in RRS, the scatter plot did not show

any trends in the data, as shown in Figure 3.7. The final step in our verification

was to create a quantile-quantile plot of the residual errors. We observed a linear

relationship between sample error and theoretical. From Figure 3.7, the linear model

assumptions of normality appear to be valid for the full factorial model.

This full factorial design generated 16,807 experiment runs, 20 times more than

the RRS design, and yielded less information in the areas that we were interested
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Full Factorial Design
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Figure 3.8: Each graph is plotted in 3D. The ζ dimension represents the
convergence times collected. Each plot shows the points used
to generate the individual response planes.
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Residuals

Min 1Q Median 3Q Max
-16.567 -4.262 0.523 3.762 15.306

Coefficients

Estimate Std. Error t value Pr(> |t|)
(Intercept) -2.132e+01 2.472e-01 -86.26 < 2e− 16
HELLO Packet Interval 3.844e+00 1.626e-02 236.49 < 2e− 16
HELLO Inactivity Interval 4.690e+00 2.376e-02 197.41 < 2e− 16
ACK Interval -1.528e-17 1.626e-02 -9.40e-16 1
MTU -1.335e-19 1.544e-04 -8.64e-16 1
SPF Computation Interval 9.796e-01 1.626e-02 60.26 < 2e− 16

Residual standard error: 6.674 on 16801 degrees of freedom
Multiple R-Squared: 0.8543, Adjusted R-squared: 0.8543
F-statistic: 1.971e+04 on 5 and 16801 DF, p-value: < 2.2e-16

Table 3.8: Full Factorial Model Output generated by R

in studying. Figure 3.8 illustrates the amount of detail generated by RRS versus

the Full Factorial design for convergence times in the sub-second range. RRS also

generated a ”good” value for a convergence time of 0.11 seconds, which was within

7% of the Full Factorial design best value. While we could have generated a full

factorial design using the final RRS input parameter ranges, we would not have

had the benefit of the knowing that was in fact the area of interest, beyond our

ability to analyze the system. In fact, we purposely chose the full factorial design

presented here because we wanted to be certain about the nature of the system. It

was necessary to explore a large range in order to validate our results in the RRS

design.

3.5 Understanding OSPF and BGP Interactions Using Ef-

ficient Experiment Design

Several problems in large-scale networking have been a research challenge [122].

Particularly, understanding of routing protocol dynamics and interactions in large-

scale is an important problem due to its immediate affect on current practice of
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inter- and intra-domain routing.

Recent research of Internet-scale routing protocol deployments has primarily

been focused on measurement data taken directly from the Autonomous Systems

(ASes) which exist in today’s Internet. These results have been valuable because

the measured protocol response has the unique characteristic of realism with real

routers executing real protocol implementations and routing real data [118, 120,

123, 124, 125, 121, 126]. Measurement data has been limited, however, in that it

is difficult to quantify the causes of the measured effects. Typically, to identify

causes behind particular routing updates or dynamics, it requires estimation and

matching methods [118, 120] which are prone to error. In addition, because of the

proprietary nature of the data, it is difficult to measure the external causes of many

of the effects. These limitations can lead to a harmful, one-sided view of the Internet

which considers only the local domain. In order to truly understand the nature of

the Internet routing, we must consider multiple ISP domains and the effects of the

unique management within each ISP domain.

Network simulation allows us to investigate routing dynamics across all do-

mains because we have complete information. It allows us to consider multiple ASes,

and to quantify the possible effects both from within and from outside a particu-

lar domain. The trade-off is realism. Minimizing this trade-off, we have developed

protocol models which adhere closely to the RFC specifications, and use prevailing

topology measurement data such as Rocketfuel [52]. In addition, we model network

effects such as link metrics at varying levels of robustness. Realizing that router

manufacturers do not always adhere to RFC specifications in their protocol imple-

mentations, we attempt to classify routing dynamics between OSPF and BGP in a

general form.

Using network simulation and incorporating “realistic” information when pos-

sible, we can begin to quantify specific protocol effects and make general qualitative

statements about the nature of the networks. In particular, we are searching for

the underlying invariant relationships between network protocol parameters and

protocol performance response.

We focus on characterizing Internet routing protocol performance response
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by the number of update messages generated by each routing protocol model (i.e.,

OSPF and BGP) as a function of protocol timers, variables, and algorithm deci-

sions. Measuring protocol response as a function of update messages generated

is important because this is where the interactions between protocols are defined.

For example, in a network where route flapping is occurring, routers may converge

quickly between the two routes as they change. Measuring convergence as the re-

sponse would lead us to believe there are no negative effects on OSPF from BGP.

Similarly, measuring link congestion does not lead to the negative effect because we

may observe only a fractional difference in bandwidth consumption over time. Each

route removal/installation can be directly measured within the OSPF domain. By

measuring the number of updates generated by the OSPF domain, a clearer picture

of the negative effects emerges. Of course these negative effects lead to slower con-

vergence times and greater link utilization, but these are secondary measures. By

measuring the interactions directly (i.e., updates messages) we are able to quantify

the direct impact on the network without having to separate out other effects. This

allows us to begin answering the questions, does my intra-AS management policy

adversely affect my inter-AS policies, and vice-versa? and which is the best approach

to minimizing negative effects between protocols?

3.5.1 Why are Protocol Interactions Harmful?

The common approach of hierarchical and layered design of several network-

ing protocols also exist in Internet routing. When designing these protocols the

only important matters are dynamics of the protocol under consideration and the

assumptions made about the other protocols below or above the hierarchy or the

layering. However, this leads to unexpected, typically implicit, interactions between

the co-existing protocols.

Network protocol weaknesses are not fully understood until they have been

deployed in large-scale production environments. There is probably no better ex-

ample of this than the BGP protocol. Clear limitations of this protocol have been

illustrated since its introduction (e.g. BGP storms [127, 128], the stability problem

[129, 130]), and several solutions (e.g. route reflection) have been proposed and
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implemented to overcome them.

These investigations have typically focused on the individual effects of the

parameter settings, and neglected the external effects on protocol performance. The

problem that we see is that there are two conflicting views of the network: intra-

domain and inter-domain routing. Our concern is that decisions made to efficiently

route data within a domain are directly affecting the ability of the network to route

data across the domain.

One immediate cause for concern is Hot Potato Routing [119], though some

researchers have similarly voiced concerns over Cold Potato routing [131]. Hot

Potato routing is interesting because it allows a router which does not necessarily

contain an up-to-date view of the internal network to make decisions about how to

route traffic through that network. As a practical example, the BGP protocol makes

a decision about which routes to install based on the distance of each competing

intra-domain route. The problem arises when this information is not stable. BGP

routers typically are responsible for generating large flows of traffic data into and

out of the network. The major concern is that a small degree of unstable routing

information may inversely impact a large amount of network traffic.

Traffic shifts because of OSPF-BGP interactions happen typically at ASes with

multiple paths to another ISP. More than half of the non-ISP ASes have such multi-

ple paths to a tier-1 ISP [120]. Previous work indicates that Hot Potato changes can

cause major shifts in routing and network traffic. In addition, hot-potato routing

may add to the degradation of forwarding plane convergence and generate tem-

porary forwarding plane loops. Finally, Hot Potato routing leads to measurement

inaccuracies in probes of the forwarding plane, and the external visibility of BGP

routes.

3.5.2 Contributions

Our main goal is to minimize the number of negative interactions between the

OSPF and BGP protocols in a multi-AS environment. In particular, the number of

OSPF updates caused by BGP protocol dynamics, and the number of BGP updates

caused by OSPF protocol characteristics should be minimized. Past investigations
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relying on measurement data have been constrained to one-way analysis of either

BGP dynamics on the OSPF protocol, or OSPF dynamics on the BGP protocol,

and then only for a single AS.

In addition, our experiment design framework includes an analysis of both

high and low level protocol dynamics. In addition to the effects of the BGP decision

algorithm on protocol performance, we also study the effects of BGP and OSPF

protocol timers and variables. Example timers include: liveness timers such as

HELLO/Inactivity in OSPF and KeepAlive/Hold in BGP, and filtering timers such

as FloodInterval and MinRouteAdvertisementInterval (MRAI).

Our work also allows the unique ability to turn on/off certain parameters

within the BGP decision process. It would be difficult to imagine re-configuring an

actual AS in order to turn Hot Potato routing on or off, and re-testing the effects

under identical conditions. This is an automatic benefit with simulation. With

simulation we can search protocol timers, variables and major algorithmic details

in an on/off fashion to quantify the effects in the face of varying network topology

robustness. Measurement data is restricted to the actual (or “real”) network stabil-

ity over the time the measurement is made. Network simulation allows us to vary

topology robustness by having more/less aggressive management strategies.

Our major contributions in this area can be itemized as follows:

• A framework to optimize OSPF and BGP protocol response: Based on a con-

trolled large-scale simulation of OSPF and BGP, we present a framework to

optimize a particular protocol performance metric over possible parameter

search space through a heuristic search algorithm. We particularly use the

number of updates with various original causes (i.e., OSPF-caused, BGP-

caused) as metrics to optimize several OSPF and BGP parameters used in

practice. Instead of measurement-based estimation and matching methods,

we leverage a controlled simulation environment to trace exact causes of each

routing update in the system.

• Experiment design approach to understand OSPF and BGP interactions: We

devise a systematic design of experiments methodology to investigate par-

ticular effects of three classes of protocol parameters in the total number of
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negative interactions between OSPF and BGP. We measure the negative inter-

actions as the total number of OSPF-caused BGP updates and BGP-caused

OSPF updates. We investigate three classes of parameters as factors into

the negative interactions: (i) OSPF timers, (ii) BGP timers, and (iii) BGP

decision making attributes.

• Large-scale realistic OSPF and BGP simulation: We present large-scale simu-

lation of OSPF and BGP in a single model. Our simulation model uses realistic

inter- and intra-domain topology generated from Rocketfuel [52] measurement

data and nearly complete RFC implementations of the OSPF and BGP pro-

tocols.

3.6 Network Protocol Simulation Models

The network protocols simulated include: BGP4, OSPFv2, and IPv4. For

scalability, the TCP layer was not simulated for the BGP routers. The assumptions

made for scalability and time available for development are addressed in this section.

3.6.1 OSPFv2 Model

OSPFv2 is a link-state routing protocol designed to run internal to a single

AS. Each OSPFv2 router maintains an identical database describing the AS net-

work’s topology. From this database, a routing table is calculated by constructing

a shortest-path tree. OSPFv2 recalculates routes quickly in the face of topological

changes, utilizing a minimum of routing protocol traffic.

The OSPFv2 protocol model is capable of simulating three types of LSAs:

Router, Summary and AS External. Router LSAs represent the network layer reach-

ability information of individual routers. There is one Router LSA per OSPF router

in the topology. Summary LSAs represent reachability information for Area Border

Routers and describe the connections to multiple areas. AS External LSAs describe

reachability information external to the OSPF area and are created by the BGP

model. When executed alone, the OSPF model only creates and floods Router and

Summary LSAs. When executed in conjunction with the BGP model, AS external

LSAs are created by the BGP protocol directly into the OSPF model executing
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on the same router. Router LSAs are only advertised by the owning router, while

Summary LSAs may advertise the same reachability information across multiple

destinations. According to OSPF RFC [58], when two summaries advertise the

same information, the decision is to add the LSA with the lower advertising router

ID. We developed our OSPFv2 simulation model as a nearly complete RFC imple-

mentation. The only exception is that Network LSAs were not modeled, and so the

topology was not configured with stub networks.

Several input parameters are available within the OSPF model. Parameters

affecting the HELLO protocol include the Hello Timer and the InactivityInterval.

The FloodInterval, SPFInterval and ACKInterval affect the convergence times of the

OSPF model. The flood timer allows for aggregation of the LSAs being flooded, and

the SPFInterval allows for multiple LSA updates to be aggregated into one shortest

path first computation. Finally, the ACKInterval delays the acknowledgment of

LSAs received by a router.

3.6.2 BGP4 Model

BGP4 speakers exchange network reachability information with each other.

The network reachability information includes the list of ASes that reachability in-

formation traverses as well as source route information. This information is used

to construct a graph of AS connectivity among BGP speakers in separate ASes.

Two routers must form a transport protocol connection between one another before

BGP begins exchanging routing information. We have chosen not to simulate the

TCP layer to increase the scalability of the simulation. Therefore, the connection

is modeled directly in the BGP model by sending a CONNECT message prior to

exchanging OPEN messages. The BGP model updates routing tables when new

information about the BGP topology changes. The BGP model periodically sends

KeepAlive messages to ensure the viability of the underlying connection. If a neigh-

boring BGP speaker becomes unreachable, then the routing table is modified and

routes advertised by the neighbor are withdrawn. BGP does not prescribe periodic

refresh messages of the routing table, and so the only information available from

currently connected speakers is contained in the Routing Information Table (RIB)
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BGP Decision Algorithm
1. Highest Local Preference

2. Lowest AS Path Length

3. Lowest Origin Type (0 iBGP,
1 eBGP, 2 Incomplete)

4. Smaller MED (iff next hops
equal)

5. Lowest IGP Cost

6. Lowest Next Hop

7. Lowest BGP Identifier

8. Vendor-dependent Tie Break

Table 3.9: Stages of the BGP decision algorithm for route selection.

[57].

Our BGP4 model simulates both eBGP and iBGP. External peers were de-

fined by connections to BGP routers outside the current AS. Internal peers were

connected as a full mesh between all eBGP routers in a given AS. With the ex-

ception of the error notification details, we have nearly fully modeled the BGP4

protocol per the RFC specification. In BGP, the decision making process occurs in

three phases. The first phase is related to calculating route preferences according to

owner-defined policies. The second phase selects the best route to each destination

based upon the route attributes, and installs those routes into the local RIB (Loc-

RIB). Phase 3 involves route aggregation and dissemination, which we did not model

since route aggregation and information reduction are not described in the RFC and

are optional and commercially dependent. Routes are disseminated as appropriate

for eBGP and iBGP, and control traffic minimized by using the MinRouteAdver-

tisementInterval (MRAI). The specification simply calls for MRAI seconds to elapse

between successive route updates between any two BGP speakers.

We have modeled all other parts of the decision making algorithm, illustrated

in Table 3.9, and the default decision if a tie exists at all levels is to keep the existing

route. Conversely, if no route exists, the route in question is always added to the

RIB. In our model the vendor dependent tie breaking decision is to keep the existing
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route.

In order to reduce the complexity of the design of experiments, input para-

meters are configurable at the AS level. Some of the variables in the BGP decision

stage are simply on/off, such as MED and Hot Potato routing, which signify that

these features are either enabled or disabled in the AS throughout the simulation.

Other variables can take a value in a range, such MED, path padding and Local-

Pref, which indicate the values of each feature, if enabled. So if MED is enabled in

an AS, we can also select a value for it’s policy. Conversely, if MED is disabled, then

the AS will have no MED attribute set. Additional parameters involve the timers

in BGP model, such as the MRAI which significantly affects the total number of

update events in the system. KeepAlive messages are affected by the interval at

which KeepAlives are sent; the HoldInterval, or just Hold, determines how many

KeepAlive messages can be missed before a connection is disabled.

3.6.3 IPv4 Model

The IP simulation model we developed is very simple and only responsible for

keeping statistical data such as packets forwarded, dropped or completed.

The main function of the IP model is to determine the destination port for

each packet in the system. The IP model determines which port should be used

by first determining if a link to the destination exists for the packet. If not, then

a routing table lookup is done. If this also fails, then the packet is dropped by the

network.

3.7 Difficulties in Large-Scale Network Simulation

3.7.1 Generation of Inter- and Intra-domain Topology

We used the topological data measured by the University of Washington’s

Rocketfuel project [52]. In totality, the Rocketfuel data identifies internal AS topolo-

gies for 10 major ISPs which cover a large area of the world. Our simulation included

5 of these ISP topologies. We chose the ISPs based upon reachability, ISP size and

number of external routers detected. For example, for scalability purposes, the

AT&T and Sprint topologies were excluded from this study, both having greater
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than 10,000 routers. The Verio map was not used because the high number of

external routers would have required greater than 3.5 million iBGP connections.

Finally, the Telstra and VSNL maps covering India and Australia were not used

because they could not be connected to the remaining ISPs from the available data.

Rocketfuel data lists routers as having both internal and external ISP con-

nections. We established an OSPFv2 router at each router in the topology. Also,

we determined that routers which contained one or more external connections to

be BGP4 routers in addition to an OSPFv2 router. This means that some routers

were running only OSPF, while others modeled both BGP and OSPF protocols.

Each ISP was configured as a single AS, and within routers were broken down into

two additional levels: areas and subnets. To determine the areas and the subnets,

we used the IP addresses of the individual machines. For example, if two machines

shared the same class A, B and C address, then we placed them into the same

subnet. Areas were determined in the same way using the class A and B prefixes.

Because the Rocketfuel data relies on traceroute to determine the ISP topolo-

gies, certain limitations had to be addressed. Rocketfuel data does not define the

bandwidth, speed or delay of the links. Link bandwidth and delay classes were

defined for the different Rocketfuel-determined router levels. The bandwidth and

delay for the topology is as follows:

• Level 0 routers: 9.92 Gb/sec and 1 ms delay

• Level 1 routers: 2.48 Gb/sec and 2 ms delay

• Level 2 routers: 620 Mb/sec and 3 ms delay

• Level 3 routers: 155 Mb/sec and 50 ms delay

• Level 4 routers: 45 Mb/sec and 50 ms delay

• Level 5 routers and below: 1.55 Mb/sec and 50 ms delay

Table 3.10 outlines the details of the multiple AS topology. BGP routers

within an AS are fully connected to form the iBGP domain. The degrees are listed

for each AS to every other AS, and the total number of BGP connections is listed

along the diagonal.
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ISP iBGP Conn AS0 AS 1 AS2 AS3 AS4

AS0: AboveNet 2,500 199 8 12 18 161
AS1: EBONE 16,384 8 38 6 12 12
AS2: Exodus 50,176 12 6 53 9 26
AS3: Tiscali 441 18 12 9 50 11
AS4: Level 3 7921 161 12 26 11 210

Table 3.10: Rocketfuel ISP Topology Parameters

3.7.2 Realism in Network Simulation

While this investigation lacks many of the details which currently exist in

today’s Internet, we have attempted to incorporate realism when possible. Our use

of Rocketfuel ISP topologies is one example. Researchers in [117] point out that

Rocketfuel topologies over estimated the numbers of routers and links in the Sprint

topology. This required us to go back to the raw traceroute data and resolve aliases

and to find the actual links between AS domains. In our own use of the data,

we have found it difficult to map the link statistics to the ISP maps, and so have

generated a reasonable link hierarchy based on current technology.

Also, we note that link metrics are typically related to link length, and link

status changes are not typically uniformly random. The ROSS.Net tool has the

facilities for modeling individual link failures and metric updates in a variety of ways,

but for our purposes a general model suffices. In fact, while we have the capability

of defining each router individually, we have chosen to apply router settings on a

per AS level.

We have attempted to incorporate some degree of realism, however, at some

point a generalization must be made. This generalization is still valuable because

it allows us to determine casually what the effects are within large-scale networks.

What is unique is that we are attempting to answer these questions within a simula-

tion framework at all, and that we are capitalizing on the fact that in simulation you

have a complete view of the model. We use this feature here to not only determine

interactions between the protocols, but also to investigate the effects of different

management perspectives, such as, what if all ISPs shared information to reduce

update messages in the control plane?
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3.7.3 Initialization of Protocols

Typically a simulation start state must be defined for the model. For a large-

scale network of several ISPs like we have, it is too complex to determine the start

state of the model algorithmically. Summary LSAs and BGP routes are determined

by the execution of the routing protocols within complex networks. Also, it is too

costly (not to mention unrealistic) to start the simulation as though each machine

has been powered on at time zero. We wanted the network to begin in a converged

state, before measuring the changes that occur as we dynamically modify link states

over time in our experiments.

In order to achieve a converged state among multiple protocols we allowed each

model to converge separately, in two stages: (i) allow OSPF to converge for each

intra-domain ISP network, and (ii) using the previously converged OSPF domain,

allow BGP to converge for the inter-domain topology. It is important to converge

the intra-AS domains first, because the BGP domain relies on it, and so that the

AS External LSAs can filter through as much of an AS as possible.

The first stage allows the OSPF model to converge and sets up the intra-AS

routing topology. Converging Router LSAs is simple enough to perform algorith-

mically. Which summary LSAs should be installed per router is more difficult to

determine because of loops in the topology. During this stage summary LSAs are

flooded through each network. Once the flooding comes to an end, the network is in

a converged state for OSPF. At this point, the LSA database contains the correct

converged information for Router and Summary LSAs. Each router writes their

individual LSA database to disk and uses it during the initialization phase for each

successive execution.

The second stage involves converging the BGP4 protocol model. It is possible

that certain configurations of the BGP model may not lead to a converged state.

Convergence was possible here because we did not model BGP policies and because

we selected model settings which broke ties consistently across all ASes. For con-

sistency, the converged state must reflect the input parameters to be studied by

the design of experiments, therefore multiple BGP start states were computed. If

the design of experiments includes the BGP decision algorithm stage for hot-potato
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routing, then the hot-potato routing parameter was also used to determine the con-

verged state. Each BGP router sends the appropriate OPEN messages to its peers.

Once all routes have been disseminated throughout both the BGP and OSPF mod-

els, and there are no outstanding Adj-RIB-out entries to be sent or OSPF LSAs

to be flooded, the model is said to be converged. Please note that we did not add

special code to guarantee BGP convergence and that each converged state was gen-

uinely converged. Finally, each BGP router writes their individual RIB to disk and

simply reads it in during the initialization phase for each future execution.

In each convergence stage, completion of route dissemination and LSA flooding

was determined by setting the end time of the model arbitrarily high. No link

attribute changes were performed in the convergence executions, so the topology

remained statically defined. We also turned off the HELLO and KeepAlive protocols

so that only events related to routing would be created. We determine that a model

converged if and only if the simulation ended prematurely (ran out of events to

process). If a simulation does not terminate prematurely when a high end time

is defined, then routing events are not “settling down” and the models are not

converging. This can happen in BGP if route flapping occurs and does not terminate.

If this occurs in the OSPF model, then an error has occurred because it is guaranteed

to converge.

Once the converged state has been created, it can then be used in subsequent

experiments where HELLO and KeepAlive messages are again turned on.

3.8 OSPF and BGP Interactions

The goal of our experiment design is to investigate feature interactions be-

tween the OSPF and BGP protocols on a “realistic” network topology. In order to

quantify the effects of possible interactions, our simulation experiments measured

the number of update messages generated by each protocol. Network performance

analysis typically focuses on the behavior of a single protocol at a time, and from

within a single AS. By optimizing the response for multiple protocols and ASes si-

multaneously we can analyze the performance of the network overall as well as from

various perspectives.
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Towards this goal we have generated 3 designs of experiments. The first design

investigates the effects of various network management policies on the response.

Broadly, there are two approaches to network management at the AS level: greedy

and cooperative. We define a greedy strategy as one in which the management

policy promotes efficiency within the AS without consideration of the effects on the

surrounding ASes. By contrast, a cooperative strategy is one in which the efficiency

goal is considered across all of the ASes first.

The second design investigates the effects of cold versus Hot Potato routing

in the BGP protocol model. This is significant because Hot Potato routing in BGP

relies on information from the OSPF protocol. Because there is a direct correlation

between the models, we expect there to be a direct feature interaction as well.

The final design considers the effects of the parameters on the response with

varying degrees of network robustness. Here we perform a full-factorial on the

topology parameters: link stability and link weight changes. The goal is to determine

the range of the parameters and their interactions under varying network conditions.

3.8.1 Response Surface

Our response surface is defined by the number of network topology update

messages exchanged by the BGP and OSPF protocols in the control plane. There

are four types of update messages possible:

• OSPF caused OSPF updates (OO)

• BGP caused BGP updates (BB)

• OSPF caused BGP updates (OB)

• BGP caused OSPF updates (BO)

There are two types of changes which may occur in the topology: link status

changes and link weight changes. The OSPF protocol detects link status changes

via the HELLO protocol, and the BGP protocol via the KeepAlive Timer. Link

weight changes are only detected by the OSPF protocol and are detected directly.

When the OSPF protocol detects a change in the topology, it creates new LSAs
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appropriate for the cause and floods them throughout the OSPF domain. As the

new LSAs are flooded they are accounted for in the “OSPF caused OSPF updates”

statistic. The same is true for BGP caused BGP updates, and we do not distinguish

between eBGP and iBGP route updates.

Figure 3.9: OSPF Caused BGP Update: When the link between the
OSPF router and iBGP 1 goes down, the iBGP connection
between 0 and 1 is also broken. The OSPF network between
iBGP nodes fails to route BGP KeepAlive messages, iBGP 0
removes routes learned via iBGP 1. The cause of the BGP
update WITHDRAW messages is said to be “OSPF caused”.

Illustrated in Figure 3.9, OSPF caused BGP updates are measured when the

connection between two iBGP peers changes. This signals a change in the underlying

OSPF network between the peers, and so the cause of the subsequent updates are

attributed to the OSPF protocol. For example, a link which was previously down

in the intra-AS domain becomes available again, and the OSPF network rebuilds

the corresponding routing tables. The new routing tables allow BGP KeepAlive

messages to suddenly start getting through again, and reachability information is

exchanged via update messages.

Figure 3.10: BGP Caused OSPF Update: When the link between eBGP
0 and eBGP 1 becomes available, eBGP 1 creates an AS
external LSA, and floods it into the connected OSPF net-
work. The cause of the resulting flood of OSPF LSA update
messages is said to be “BGP caused”.

BGP caused OSPF updates are measured when an eBGP router creates or

installs a new route to a destination IP prefix, shown in Figure 3.10. The AS

External LSA created by the IGP domain is tagged as being caused by BGP and at



52

every hop throughout the flood is measured as such. Not all AS External LSAs are

caused by BGP. OSPF routers must exchange their entire LSA database when a link

becomes available, and these LSAs must be flooded throughout a domain according

to the OSPF RFC.

BGP caused OSPF + OSPF caused BGP Updates (3.1)

Because we are specifically interested in feature interactions between the OSPF

and BGP protocols, our main response surface is defined in Equation (3.1). Also,

because the interactions are implicit in the models, specific code had to be added to

the models to detect and mark updates as to their cause, and tracked throughout

the system for quantification purposes.

3.8.2 Network Topology Stability

Recall that our network protocol models start in the converged state for each

experiment generated by the optimization. In steady state, no control plane update

messages are exchanged, other than periodic OSPF LSA refreshing. BGP does not

require refreshing of the RIB. In order to generate update messages in the system,

two types of network events were modeled: link status changes and link weight

changes.

Link statuses are either up or down and occur with a uniform random proba-

bility over the simulation endtime. These events can model either link congestion in

the data plane or actual link availability on a given timeline. The probability that a

link status may change in the given simulation endtime is varied to model different

levels of network topology stability. The stability levels are: 1%, 10% and %15

over runtime. While it was shown in [100] that some links fail far more frequently

than others over a given interval, generalizing link failures uniformly allows us to

investigate varying degrees of network topology stability. While the system has the

capability of modeling individual links, creating a more “realistic” link failure model

is beyond the scope of this investigation.

Link weight changes follow the same uniform random probability over the

simulation endtime, but rather than act as up/down events, they affect the network
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by varying the metric on the links. Also, link weight change events are delivered

directly to the affected OSPF routers and are modeled as network administration

events which occur through either human contact or programmatically. Each router

originating an LSA containing the affected link refreshes the LSAs containing the

link in question. Each new link metric is chosen randomly over the ranges: ± 10,

25, and 50 units.

3.9 Design of Experiments

We present here three investigations with the goal of generally characterizing

the system under test in variety of conditions. The first experiment design considers

varying network management perspectives. These perspectives each attempt to

minimize the response as related to either a global or local perspective. One example

of a local perspective is optimizing the OSPF domain without considering the impact

on the BGP domain. The global perspective implies all ISPs working together to

reduce control plane traffic.

The second design investigates cold- versus hot-potato routing policies within

an AS. This investigation focuses on the BGP attribute, MultiExitDiscriminator

(MED) for cold-potato routing and the IGP hop count for hot-potato routing.

Design 3 analyzes the performance of protocol models under varying degrees

of network stability and link weight management. Network stability is determined

by the frequency and duration of link outages in the network.

For each experiment conducted, an efficient RRS search was performed for the

given response value, and each RRS search generated 200 simulation samples. We

then performed a multiple linear regression on the results of the RRS search. Please

note that only AdjustedR2 results are shown because experiments may have different

input parameters. The AdjustedR2 value indicates the degree to which the input

parameters are related to the response. In each experiment the P value was always

< 0.0001, indicating in each case that the regression model predicted the response in

a statistically significant manner. In other words, in each experiment the predictions

of the model are better than chance alone. In addition, the Degrees of Freedom are

not reported per experiment. In each experiment the degrees of freedom was high,



54

> 100. Finally, multi-collinearity was not observed to be a problem in any of the

experiments (i.e., all R2 with other X values were < 0.75.

3.9.1 Input Parameter Classes

Input Parameter Classes Min, Max, Step Defaults

OSPFv2 Timer Class:
OSPF Hello Interval [1,4,1] secs 2
OSPF Inactivity Interval [2,5,1] multiplier 4
OSPF Flood Interval [1,4,1] secs 1

BGP4 Timer Class:
BGP KeepAlive Interval [25,35,2] secs 30
BGP Hold Interval [36,56,4] secs 45
BGP Min Update Interval [20,40,4] secs 30

BGP Policy Routing Class:
MED ON/OFF ON
Hot Potato ON/OFF ON

BGP Decision Algorithm Class:
Local-Pref {low, med, high} low
MED {low, med, high} low
AS-PATH Padding {low, med, high} low

Table 3.11: Detail of parameter space for the large-scale OSPF and BGP
experiment designs.

The system under test can be characterized as different classes of input para-

meters. The four classes shown in Table 3.11 represent timers for OSPF and BGP,

the BGP route selection policies and the BGP decision algorithm. Each class is

defined at the AS level and the values generated are determined by the efficient

search algorithm, RRS.

The BGP and OSPF timer classes represent router timers and the values they

may have during each simulation run. The specified ranges and steps for each timer

value determines the search sample space. The defaults shown are the values used

per AS when a given class is not searchable within a given design.

The BGP Policy Routing Class allows hot- and cold-potato routing to be

enabled/disabled within an AS. The ROSS.Net framework allows any of the stages
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in the BGP decision algorithm to be disabled, however these are the two of interest

in this paper.

The BGP Decision Algorithm Class provides specific values for the AS routes.

For example, if cold-potato routing is enabled within an AS, then the MED value

is defined for routes created by that AS. In this paper we investigate cold-potato

routing so must define MED values for those ASes where cold-potato routing in

enabled. Values are low, medium and high and correspond to varying levels of

aggressiveness within each AS. Recall that during the BGP decision algorithm, stage

1, we install the route with the higher Local-Pref value, so each AS must define this

attribute for each route created. When these stages are enabled, but not searched

by the experiment design, the default values are used.

When all of the input parameter classes are searched the sample space is

greater than 14 million. Heuristic search algorithms such as RRS allow us to search

this sample space efficiently, i.e., using a proportionally small number of experi-

ments, while still achieving highly correlated results (high AdjustedR2 values).

3.9.2 Experiment Design 1: Management Perspective

Our first investigation focuses on the role of network management perspec-

tives in the response plane. We identify two disparate approaches to network man-

agement: local and global. The local approach involves performance tuning an

AS domain without knowledge or concern for the impact on neighboring ASes, or

even other protocols within the AS. The global approach attempts to optimize all

of the ASes simultaneously and is semantic to optimal performance with respect

to the inter-network as a whole. Here information about each neighboring AS is

openly available and the optimization goal is across all ASes. BB, OO, OB, BO

and BO+OB are considered local policies and the global policy is the addition of

all update messages (BB+OO+OB+BO).

This design focuses on multiple response surfaces, as shown in Table 3.12 and

optimizes across all input parameter classes. Each Experiment conducted gener-

ates a unique response plane corresponding to a network management perspective.

For example, Experiment 1 generates a response plane where OSPF caused OSPF
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Design 1: Management Perspectives
Response Surfaces

Experiment BB OO OB BO Optimal Response BO+OB Adj R2 Effects: optimal values
0 + - - - 1,938 77,024 0.30 Inactivity: 3 Keep: 26
1 - + - - 27,424 59,429 0.88 Hello: 3 Flood: 4
2 - - + - 52,700 52,945 0.88 Flood: 1 Keep: 34
3 - - - + 18 75,499 0.18 MRAI: 34
4 - - + + 52,959 52,959 0.91 Keep:34 Hold: 45
5 + + + + 83,261 52,727 0.52 Flood: 1 Keep: 34

Sample Space Size: 14,348,907 + = searched

Table 3.12: Design 1: Search varying network management perspectives.
The optimal response column relates to the specific man-
agement goal searched. The BO+OB column represents the
interactions between protocols that occurred.

updates were minimized. The optimal response column indicates that of the 200

simulation runs, the minimum number of OO updates obtained was 27,424. The

BO+OB column indicates the number of interactions that occurred between the

OSPF and BGP protocols. A value of 59,429 indicates that minimizing OO updates

does not greatly increase the number of updates between OSPF and BGP when

compared to the other perspectives. The AdjustedR2 value of 88% indicates that

the search parameters highly correlated to the response, and the optimal values were

3 seconds for the OSPF HELLO timer, 4 seconds for the OSPF Flood timer, and

56 seconds for the BGP HOLD interval.

Exp ΣBB ΣOO ΣBO ΣOB ΣBO + OB ΣGlobal

0 1,938 27,624 20 77,004 77,024 106,586
1 9,565 27,864 245 52,700 52,945 90,374
2 2,507 27,672 18 75,481 75,499 105,678
3 2,574 27,424 20 59,409 59,429 89,427
4 8,619 27,888 211 52,748 52,959 89,466
5 2,687 27,847 24 52,703 52,727 83,261

Table 3.13: Variation in the optimization of different perspectives. This
table illustrates the tradeoffs made for each particular opti-
mization. Bold values are optimization results.

How efficient is each management perspective? Table 3.13 lists the results from

each of the experiments. We see that the lowest number of interactions occurred

in Experiment 1 where OSPF caused BGP updates were optimized. Because we

were optimizing OB updates, and OB updates account for greater than 99% of
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BO+OB updates, this result make sense. Experiment 5 generated the least number

of updates overall and was 7-27% better than the local perspectives. Not only does

optimizing globally lower the number of overall updates, it also lowers the number

of interactions between the protocols, within ¡1% of the best case. So it is clear

that maintaining privacy between ISPs leads to an increase in the amount of update

messages in the network.

Each row of the table represents the optimal value generated by the Exper-

iment. Each column indicates the total number of each type of update message

generated for those parameters. Experiments 1, 3 and 4 generated the least number

of updates overall locally, and the least number of interactions. Each of these local

policies where within 7% of global.

Of the different types of update messages, BB and BO were insignificant in

respect to the global number of updates. Conversely, OO and BO were a significant

fraction of all update messages, but the OO updates varied little. This leaves OSPF

caused BGP (OB) update messages as the significant response to optimize when

attempting to minimize both feature interactions and the overall number of update

messages in the network.

Which protocol parameters effect the response? If we choose to minimize the

number of updates and/or interactions in the network by minimizing OB updates,

then Table 3.12 suggests settings for the OSPF Hello interval and Flood interval be

set high. In our search, settings of 3 seconds for the Hello interval and 4 seconds for

the Flood interval suggest that OSPF convergence times be lengthened in order to

minimize overall updates. Generally, slow convergence is not a desirable feature in

OSPF networks as it can lead to losses in the data plane. However, slower detection

in OSPF may reduce the effects of highly unstable links.

An alternative is to optimize for one of the other local perspectives which

prescribe aggressive OSPF convergence settings. In Experiments 2, 4 and 5 the

important parameter appears to be the BGP KeepAlive timer. In each case, this

timer is set to a high value. Since iBGP connections far outweigh eBGP connections,

it makes sense then that by setting the KeepAlive timer to a high value would

minimize the effects of highly unstable links in the path between iBGP neighbors.
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3.9.3 Experiment Design 2: Cold vs Hot Potato Routing

Design 2: Cold vs Hot Potato Routing
BGP Decision Classes

Experiment Hot Potato MED Optimal Response Adj R2

0 - - 52,722 0.91
1 + - 52,494 0.91
2 - + 52,675 0.91
3 + + 52,908 0.91

Sample Space Size: 14,348,907 + = searched

Table 3.14: Design 2: Specifically analyze performance of protocol mod-
els under competing goals of Hot and Cold Potato routing.

When two otherwise equal routes are being considered for addition to the

BGP RIB, and those routes are both from iBGP peers, the route selected should

be from the nearest peer. To determine which peer is the shortest distance away,

the IGP hop count path is considered. This is the definition of Hot Potato routing,

and was highlighted as a potential cause of many OSPF caused BGP updates in

[118]. In that study it was noted that it was not possible to quantify the causes

of the updates through measurement data. Also, protocol timer settings in routers

throughout the network were not known. Simulation allows us to have a global view

of the network, and complete topological information. Searching the sample space

allows us to quantify the causes of the updates as well as determine the effects of

any potentially influential protocol parameters.

Now that we have a validation that the OSPF domain adversely impacts the

BGP domain, we can begin to focus our experiments on the hypothesized cause of

the interruptions. In Table 3.14 we investigate the effects of cold versus hot potato

routing. In this design we perform a simple full-factorial of RRS optimizations,

turning Hot Potato routing on/off, and the MED on/off within the BGP decision

algorithm.

If the goal of Hot Potato routing is to transit data through the network by the

shortest paths possible, the goal of cold potato routing is the opposite. Cold potato

routing is employed when end-to-end quality of service is of importance to an ISP.

By carrying data longer in the network, an ISP can exert more control over the data
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before handing it off to another ISP. The MED accomplishes this goal by advertising

to an AS the preferred routes data should take. Preferred is a term which is open

to interpretation, but in this sense it implies “highest quality” ingress points to a

neighboring AS [132]. An ISP implements cold potato routing by setting the MED

parameter.

BGP Decision Algo Hot Potato MED Neither Both

Local-Pref 6383 1,714 767 885
AS Path 15,251 5,503 2,240 5,874
Origin 1 8 50 204
MED OFF 4 OFF 0
Hot Potato 199 OFF OFF 1,229
Next Hop 123 369 175 113
Default 476 778 272 635

Total 22,433 8,376 3504 12,444
% Hot Potato 0.8 - - 9
% MED - ¿ 1 - 0

Table 3.15: This table illustrates the steps used in the BGP decision al-
gorithm for route updates. Each entry illustrates how many
times a particular step resulted in a tie-breaking event.

Which steps in the BGP decision algorithm are most important? Table 3.15

quantifies the tie-breaking steps in the BGP decision making algorithm. We ex-

pected MED and Hot Potato to play a larger role in the algorithm, based on previ-

ous work [118, 120]. In our model it appears that Local-Pref and AS Path Padding

play a much larger role in the decision process. In practice, these parameters may

not be implemented in some or all ISP networks. Clearly, these parameters do play

an important role in dampening the effects of both Hot and Cold Potato routing.

While our statistical models show a high correlation between the input para-

meters and the response (AdjustedR2 = 91%), we believe that this design is only

an initial step towards systematic questioning of the BGP decision algorithm. For

example, when hot-potato routing only is enabled, the number of times the AS

Path length was the tie-breaker increased from about 2,000 to over 15,000. Clearly,

hot-potato routing is generating longer AS Path lengths in the routes. But it is

unclear why there would be a corresponding 10-fold increase in the number of times
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Design 3: Network Robustness
Topology Parameters

Experiment Link Stability (LS) Link Weight (LW) Opt Resp Adj R2 Effects: optimal values
0 1% ± 10 50,450 0.89 Keep: 34
1 1% ± 25 54,254 0.91 Keep: 32 Hold: 46 MRAI: 33
2 1% ± 50 52,959 0.91 Keep: 34 Hold: 45
3 10% ± 10 73,196 0.87 Keep: 34 Hold: 39 Inactivity: 4
4 10% ± 25 75,819 0.88 Keep: 34 Hello: 4 Inactivity: 5
5 10% ± 50 76,346 0.87 Keep: 34 Hold: 55
6 15% ± 10 99,564 0.78 Keep: 35 Flood: 2 MRAI: 28
7 15% ± 25 100,493 0.78 Keep: 34
8 15% ± 50 110,009 0.900 Keep: 34 Hello: 4

Sample Space Size: 14,348,907

Table 3.16: Design 3: Analyze performance of protocol models under
varying degrees of network stability and link weight manage-
ment.

the Local Pref tie-breaker was used. When just cold-potato routing was employed,

these tie-breakers only doubled, which indicates that cold-potato routing has the

same problem, but to much less a degree. More importantly, Table 3.15 indicates

that when both policies are enabled, cold-potato routing can dampen the negative

effects of hot-potato routing.

We did not expect this policies to have such a large effect on the other stages

in the BGP decision algorithm. More insight into these results may be gained by

future designs which takes this into account.

3.9.4 Experiment Design 3: Network Robustness

Table 3.16 illustrates our third design. The purpose of this experiment design

is to ascertain the effects of network robustness on our characterization of the system

under test. Network robustness is varied in two dimensions: link stability and link

weight changes. Link stability was varied randomly over the intervals 1, 10 or 15%

and link weights randomly over the intervals 10, 25 or 50 units. The design computes

a full factorial over the two parameters of network robustness.

Which parameters were most important in reducing interactions? We report

that the liveness timers are the important parameter settings and are related to

minimizing OSPF caused BGP updates (OB). KeepAlive is maximized in BGP,

and the InactivityInterval is maximized in OSPF. In OSPF, the flood timer, when

important is optimized to a value of 2 leading to slower convergence. As the network

becomes less stable however, we begin to see that other parameters are having

more of an impact on the response. In OSPF we begin to see the Hello frequency
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becoming more important, and maximized. This is interesting because delaying

detection allows OSPF to aggregate (implicitly) more changes into a single LSA

update, which would act to minimize the overall number of updates generated.

This implicit aggregation is occurring in the BGP domain as well by setting the

KeepAlive interval to 34 seconds and the Hold Interval to 45-55 seconds. By

detecting fewer link status changes the models are generating fewer control plane

update messages.

LW/LS Optimal Avg BO+OB Avg Global Defaults

±10,1% 50,450 17% 19% 18%
±10/10% 73,196 17% 8%
±10/15% 99,564 36% 34%
±25/1% 54,254 10% 13% 18%
±25/10% 75,819 17% 17%
±25/15% 100,493 22% 21%
±50/1% 52,959 19% 14% 20%
±50/10% 76,346 17% 19%
±50/15% 110,009 18% 17%

Table 3.17: Improvements over average BO+OB, Global in design 3. The
last column illustrates the improvement over using the de-
fault protocol parameters.

Table 3.17 shows that we continue to receive consistent improvements in the

response over the average regardless of the robustness in the network. We see that

the optimal simulation experiments are simply setting the link failure detection

parameters in either protocol to their slowest convergence settings. By not detecting

link status changes quickly, the number of updates generated can most effectively be

minimized. The table compares the amount of improvement over the average cases

of BO+OB and the global response, as well as over the default settings. Generally,

this approach to minimizing updates yielded a 20% improvement over the average.

This figure is primarily related to the intervals chosen for the protocol parameters.

In the future we could relate the improvements to the rate of convergence, which

would be a more meaningful representation of the trade-off.

From the table we also see that the response is independent of the link weight

changes. Each link weight interval varies by ¡5% for each fixed link stability interval.
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This is surprising since aggressive link weight policies are known to produce routing

loops among other problems. While aggressive changes impact the OSPF domain

internally, those updates do not appear to be propagating into the BGP domain

via OSPF. We theorize that the link status changes have a much greater impact on

the OB response because they have a direct impact on the iBGP connections which

dominate the model.

3.10 Summary

We have demonstrated the efficacy of the Recursive Random Search (RRS)

technique when applied to large-scale meta-simulation of complex OSPFv2 routing

networks. We found that:

1. the number of simulation experiments is reduced by an order of magnitude

when compared to full-factorial design approach,

2. this approach enabled the rapid elimination of unnecessary parameters, and

3. RRS enabled the rapid understanding of key parameter interactions.

RRS enabled us to make a critical path analysis and make the interesting

observation that when modeling only OSPF control-plane dynamics we were able to

shrink the number nodes down to that subset that was only needed for determining

convergence times. This reduction resulted in models that execute 100 times faster

than their full topology counterparts while at the same time gaining greater detail

in the areas of interest. ROSS.Net provided “good” results fast for our selected

response plane: OSPF router convergence.

Also, we have used an experiment design approach to characterize OSPF and

BGP behavior in combination as well as their interactions. Based on the Rocket-

fuel data repository, we have developed a realistic large-scale simulation of these

two dominant inter- and intra-domain routing protocols. We, then, employed an

efficient experiment design framework, ROSS.Net [114, 51], to search for best pro-

tocol parameter settings. The protocol parameters we investigated included OSPF

timers, BGP timers and BGP decision making attributes. We defined the number
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of routing updates as the metric to minimize in our heuristic search for the best

parameter settings. We also classified the routing updates into four categories to

help design our experiments more flexibly.

We believe that systematic experiment design approaches can be leveraged in

several large-scale networking problems. Future work includes investigation of the

steps of BGP decision making algorithm.



CHAPTER 4

ROSS: A High-Performance, Low Memory, Modular Time

Warp System

We introduce a new Time Warp system called ROSS: Rensselaer’s Optimistic Sim-

ulation System. ROSS is an extremely modular kernel that is capable of achieving

event rates as high as 1,250,000 events per second when simulating a wireless tele-

phone network model (PCS) on a quad processor PC server. In a head-to-head

comparison, we observe that ROSS out performs the Georgia Tech Time Warp

(GTW) system by up to 180% on a quad processor PC server and up to 200% on

the SGI Origin 2000 . ROSS only requires a small constant amount of memory

buffers greater than the amount needed by the sequential simulation for a constant

number of processors. ROSS demonstrates for the first time that stable, highly-

efficient execution using little memory above what the sequential model would re-

quire is possible for low-event granularity simulation models. The driving force

behind these high-performance and low memory utilization results is the coupling

of an efficient pointer-based implementation framework, Fujimoto’s fast GVT algo-

rithm for shared memory multiprocessors, reverse computation and the introduction

of Kernel Processes (KPs). KPs lower fossil collection overheads by aggregating

processed event lists. This aspect allows fossil collection to be done with greater

frequency, thus lowering the overall memory necessary to sustain stable, efficient

parallel execution. These characteristics make ROSS an ideal system for use in

large-scale networking simulation models. The principle conclusion drawn from this

study is that the performance of an optimistic simulator is largely determined by

its memory usage.

4.1 The Time Warp Protocol

For Time Warp protocols there is no consensus in the PDES community on how

best to implement them. One can divide Time Warp implementation frameworks

into two categories: monolithic and modular based on what functionality is directly

64
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contained within the event scheduler. It is believed that the monolithic approach

to building Time Warp kernels is the preferred implementation methodology if the

absolute highest performance is required. The preeminent monolithic Time Warp

kernel is Georgia Tech Time Warp (GTW) [88, 92]. One only needs to look at

GTW’s 1000 line “C” code Scheduler function to see that all functionality is directly

embedded into the scheduling loop. This loop includes global virtual time (GVT)

calculations, rollback, event cancellation, and fossil collection. No subroutines are

used to perform these operations. The central theme of this implementation is

performance at any cost.

This implementation approach, however, introduces a number of problems for

developers. First, this approach complicates the adding of new features since doing

so may entail code insertions at many points throughout the scheduler loop. Second,

the all-inclusive scheduler loop lengthens the “debugging” process since one has to

consider the entire scheduler as being a potential source of system errors.

At the other end of the spectrum, there are modular implementations which

break down the functionality of the scheduler into small pieces using an object-

oriented design approach. SPEEDES is the most widely used Time Warp system

implemented in this framework [111, 112, 113]. Implemented in C++, SPEEDES

exports a plug-and-play interface which allows developers to easily experiment with

new time management, data distribution and priority queue algorithms.

All of this functionality and flexibility comes at a performance price. In a

recent study conducted on the efficiency of Java, C++ and C, it was determined

that “C programs are substantially faster than the C++ programs” (page 111) [108].

Moreover, a simulation of the National Airspace System (NAS), as described in [115],

was originally implemented using SPEEDES, but a second implementation was real-

ized using GTW. Today, only the GTW implementation is in operation. The reason

for this shift is largely attributed to GTW’s performance advantage on shared-

memory multiprocessors. Thus, it would appear that if you want maximum perfor-

mance, you cannot use the modular approach in your implementation.

Another source of concern with Time Warp systems is memory utilization.

The basic unit of memory can be generalized to a single object called a buffer [87].



66

A buffer contains all the necessary event and state data for a particular LP at a

particular instance in virtual time. Because the optimistic mechanism mandates

support of the“undo” operation, these buffers cannot be immediately reclaimed.

There have been several techniques developed to reduce the number of buffers as well

as to reduce the size of buffers required to execute a Time Warp simulation. These

techniques include infrequent state-saving [81], incremental state-saving [94, 113],

and most recently reverse computation [84].

Rollback-based protocols have demonstrated that Time Warp systems can

execute in no more memory than the corresponding sequential simulation, such as

Artificial Rollback [99] and Cancelback [96], however performance suffers. Adaptive

techniques [87], which adjust the amount of memory dynamically, have been shown

to improve performance under “rollback thrashing” conditions and reduce memory

consumption to within a constant factor of sequential. However, for small event

granularity models (i.e., models that require only a few microseconds to process an

event), these adaptive techniques are viewed as being too heavy weight.

In light of these findings, Time Warp programs typically allocate much more

memory than is required by the sequential simulation. In a recent performance study

in retrofitting a large sequential Ada simulator for parallel execution, SPEEDES

consumed 58 MB of memory where the corresponding sequential only consumed 8

MB. It is not known if this extra 50 MB is a fixed constant or a growth factor [110].

We introduce a new Time Warp system called ROSS: Rensselaer’s Optimistic

Simulation System. ROSS is a modular, C-based Time Warp system that is capa-

ble of extreme performance. On a quad processor PC server ROSS is capable of

processing over 1,250,000 events per second for a wireless communications model.

Additionally, ROSS only requires a small constant amount of memory buffers greater

than the amount needed by the sequential simulation for a constant number of

processors. The key innovation driving these high-performance and low memory

utilization results is the integration of the following technologies:

• pointer-based, modular implementation framework,

• Fujimoto’s GVT algorithm [90],
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• reverse computation, and

• the use of Kernel Processes(KPs).

KPs lower fossil collection overheads by aggregating processed event lists. This

aspect allows fossil collection to be done with greater frequency, thus lowering the

overall memory necessary to sustain stable, efficient parallel execution.

As a demonstration of ROSS’ high-performance and low memory utilization,

we put ROSS to the test in a head-to-head comparison against one of the fastest

Time Warp systems to date, GTW.
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Figure 4.1: Data Structure Comparison: ROSS vs. GTW.

4.2 Data Structure and System Parameter Comparison

4.2.1 Algorithm and Implementation Framework

GTW is designed to exploit the availability of shared-memory in a multi-

processor systems. With that view in mind, a global structure called GState is the
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backbone of the system as shown in Figure 4.1. This array represents all the data

used by a particular instantiation of a Scheduler thread, which is executed on a

distinct processor.

Inside each GState element is a statically defined array of LP pointers, locks

for synchronizing the transfer of events between processors, pointers to manage the

“free-list” of buffers, and timers for performance monitoring. To obtain the pointer

for LP i, the follow access is required:

LP Ptr = GState[TWLP [i].Map].CList[LPNum[i]];

where, i is the LP number, TWLP [i].Map is the processor on which the LP resides

and LPNum[] array specifies to which slot within a processor’s CList array the

LP’s pointer was located (see Figure 4.1).

Now, using these data structures, GTW implements an optimistic time man-

agement algorithm that throttles execution based on the availability of memory.

On each processor, a separate pool of memory is created for each remote processor.

When the application requests a free memory buffer, the owning processor will use

the LP destination information provided in the TWGetMsg routine to determine which

processor’s pool to allocate from. If that pool is empty, the abort buffer is returned

and no event is scheduled. When the current event has completed processing, the

Scheduler will rollback (i.e., abort) that event and attempt to reclaim memory by

computing GVT. This arrangement is called partitioned buffer pools [91]. The key

properties of this approach are that over-optimism is avoided since a processor’s

forward execution is throttled by the amount of buffers in its free-list and the false

sharing of memory pages is lessened since a memory buffer is only shared between

a pair of processors.

To implement GVT, GTW uses an extremely fast asynchronous GVT algo-

rithm that fully exploits shared memory [90]. To mitigate fossil collection overheads,

an “on-the-fly” approach was devised [90]. Here, events, after being processed,

are immediately threaded into the tail of the appropriate free-list along with be-

ing placed into the list of processed events for the LP. To allocate an event, the

TWGetMsg function must test the head of the appropriate free-list and make sure



69

that the time stamp of the event is less than GVT. If not, the abort buffer is re-

turned and the event that is currently being processed will be aborted. As we will

show in Section 4.3, “on-the-fly” fossil collection plays a crucial roll in determining

GTW’s performance.

ROSS’ data structures, on the other hand, are organized in a bottom-up

hierarchy, as shown on the left panel of Figure 4.1. Here, the core data structure is

the tw event. Inside every tw event is a pointer to its source and destination LP

structure, tw lp. Observe, that a pointer and not an index is used. Thus, during

the processing of an event, to access its source LP and destination LP data only the

following accesses are required:

my source lp = event− > src lp;

my destination lp = event− > dest lp;

Additionally, inside every tw lp is a pointer to the owning processor structure,

tw pe. So, to access processor specific data from an event the following operation is

performed:

my owning processor = event− > dest lp− > pe;

This bottom-up approach reduces access overheads and may improve locality and

processor cache performance. Note that prior to adding Kernel Processes (KPs),

the tw kp structure elements were contained within the tw lp. The role of KPs will

be discussed in Section 4.3.4.

Like GTW, ROSS’ tw scheduler function is responsible for event processing

(including reverse computation support), virtual time coordination and memory

management. However, that functionality is decomposed along data structure lines.

This decomposition allows the tw scheduler function to be compacted into only

200 lines of code. Like the scheduler function, our GVT computation is a modular

implementation of Fujimoto’s GVT algorithm [90].

ROSS also uses a memory-based approach to throttle execution and safeguard

against over-optimism. Each processor allocates a single free-list of memory buffers.
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When a processor’s free-list is empty, the currently processed event is aborted and a

GVT calculation is immediately initiated. Unlike GTW, ROSS fossil collects buffers

from each LP’s processed event-list after each GVT computation and places those

buffers back in the owning processor’s free-list. We demonstrate in Section 4.3

that this approach results in significant fossil collection overheads, however these

overheads are then mitigated through the insertion of Kernel Processes into ROSS’

core implementation framework.

4.2.2 Performance Tuning Parameters

GTW supports two classes of parameters: one set to control how memory is

allocated and partitioned. The other set determines how frequently GVT is com-

puted. The total amount of memory to be allocated per processor is specified in a

configuration file. How that memory is partitioned for a processor is determined by

the TWMemMap[i][j] array and is specified by the application model during initial-

ization. TWMemMap[i][j] specifies a ratioed amount of memory that processor j’s

free-list on processor i will be allocated. To clarify, suppose we have two processors

and processor 0’s TWMemMap array has the values 50 and 25 in slots 0 and 1 respec-

tively. This means that of the total memory allocated, 50 buffers out of every 75

will be assigned to processor 0’s free-list on processor 0 and only 25 buffers out of

every 75 buffers allocated will be assigned to processor 1’s free-list on processor 0.

To control the frequency with which GVT is calculated, GTW uses batch and

GV Tinterval parameters. The batch parameter is the number of events GTW will

process before returning to the top of the main event scheduling loop and checking

for the arrival of remote events and anti-messages. The GV Tinterval parameters

specifies the number of iterations through the main event scheduling loop prior to

initiating a GVT computation. Thus, on average, batch×GV Tinterval is the number

of events that will be processed between successive GVT computations.

ROSS, like GTW, shares a batch and GV Tinternal parameter. Thus, on average,

batch ∗ GV Tinterval events will processed between GVT epochs. However, because

ROSS uses the fast GVT algorithm with a conventional approach to fossil collection,

we experimentally determined that ROSS can execute a simulation model efficiently
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in:

C ×NumPE × batch×GV Tinterval

more memory buffers than is required by a sequential simulation. Here, NumPE

is the number of processors used and C is a constant value. Thus, the additional

amount of memory required for efficient parallel execution only grows as the number

of processors is increased. The amount per processor is a small constant number.

The intuition behind this experimental phenomenon is based on the previous

observation that memory can be divided into two categories: sequential and opti-

mistic [87]. Sequential memory is the base amount of memory required to sustain

sequential execution. Every parallel simulator must allocate this memory. Opti-

mistic memory is the extra memory used to sustain optimistic execution. Now,

assuming each processor consumes batch×GV Tinterval memory buffers between suc-

cessive GVT calculations, on average that is the same amount of memory buffers

that can be fossil collected at the end of each GVT epoch. The multiplier factor, C,

allows each processor to have some reserve memory to schedule new events into the

future and continue event processing during the asynchronous GVT computation.

The net effect is that the amount of optimistic memory allocated correlates to how

efficient GVT and fossil collection can be accomplished. The faster these two com-

putations execute, the more frequently they can be run, thus reducing the amount

of optimistic memory required for efficient execution. Experimentally, values rang-

ing from C = 2 to C = 8 appear to yield the best performance for the PCS model

depending on the processor configuration.

GTW is unable to operate efficiently under the above memory constraints be-

cause of “on-the-fly” fossil collection. This aspect will be discussed in more throughly

in Section 4.3.3.
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4.3 Performance Study

4.3.1 Benchmark Applications

There are two benchmark applications used in this performance study. The

first is a personal communications services (PCS) network model as described in [85].

Here, the service area of the network is populated with a set of geographically

distributed transmitters and receivers called radio ports. A set of radio channels are

assigned to each radio port, and the user in the coverage area sends and receives

phone calls using the radio channels. When a user moves from one cell to another

during a phone call a hand-off is said to occur. In this case the PCS network attempts

to allocate a radio channel in the new cell to allow the phone call connection to

continue. If all channels in the new cell are busy, then the phone call is forced to

terminate. For all experiments here, the portable-initiated PCS model was used,

which discounts busy-lines in the overall call blocking statistics. Here, cells are

modeled as LPs and PCS subscribers are modeled as messages that travel among

LPs. PCS subscribers can travel in one of 4 directions: north, south, east or west.

The selection of direction is based on a uniform distribution. For both, GTW and

ROSS, the state size for this application is 80 bytes with a message size of 40 bytes

and the minimum lookahead for this model is zero due to the exponential distribution

being used to compute call inter-arrivals, call completion and mobility. The event

granularity for PCS is very small (i.e., less than 4 microseconds per event). PCS is

viewed as being a representative example of how a “real-world” simulation model

would exercise the rollback dynamics of a optimistic simulator system.

The second application is a derivative of the rPHOLD [92, 93] synthetic work-

load model called rPHOLD. Here, the standard rPHOLD benchmark is modified to

support “reverse-computation”. We configure the benchmark to have minimal state,

message size and “null” event computation. The forward computation of each event

only entails the generation of two random numbers; one for the time stamp and

the other for the destination LP. The time stamp distribution is exponential with a

mean of 1.0 and the LP distribution is uniform, meaning that all LPs are equally

like to be the “destination” LP. Because the random number generator (RNG) is

perfectly reversible, the reverse computation “undoes” an LP’s RNG seed state by
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computing the perfect inverse function as described in [84]. The message population

per LP is 16. Our goal was to create a pathological benchmark which has a minimal

event granularity, yet produces a large numbers of remote messages (75% in the 4

processor case), which can result in a large number of “thrashing” rollbacks. To

date, we are unaware of any Time Warp system which is able to obtain a positive

speedup (i.e., greater than 1) for this particular configuration of rPHOLD.

4.3.2 Computing Testbed and Experiment Setup

Our computing testbed consists of two different computing platforms. The

first is a single quad processor Dell personal computer. Each processor is a 500

MHz Pentium III with 512 KB of level-2 cache. The total amount of available RAM

is 1 GB. Four processors are used in every experiment. All memory is accessed via

the PCI bus, which runs at 100 Mhz. The caches are keep consistent using a snoopy,

bus-based protocol.

The memory subsystem for the PC server is implemented using the Intel

NX450 PCI chipset [95]. This chipset has the potential to deliver up to 800 MB

of data per second. However, early experimentation determined the maximum ob-

tainable bandwidth is limited to 300 MB per second. This performance degradation

is attributed to the memory configuration itself. The 1 GB of RAM consists of 4,

256 MB DIMMs. With 4 DIMMs, only one bank of memory is available. Thus,

“address-bit-permuting” (ABP), and bank interleaving techniques are not available.

The net result is that a single 500 MHz Pentium III processor can saturate the

memory bus. This aspect will play an important roll in our performance results.

The second computing platform is an SGI Origin 2000 [97] with 12, 195 Mhz

R10000 processors. This architecture, unlike the PC server, is distributed memory

and has non-uniform memory access times, yet is still cache-coherent via a directory-

based protocol. To compensate for large local and remote memory access delays,

each processor has a 4 MB level-2 cache.

For first series of PCS experiments, each PCS cell is configured with 16 initial

subscribers or portables, making the total event population for the simulation 16

times the number of LPs in the system. The number of cells in the system was
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varied from 256 (16x16 case) to 65536 (256x256 case) by a factor of 4.

Here, GV Tinterval and batch parameters were set at 16 each. Thus, up to 256

events will be processed between GVT epochs for both systems. These settings

where determined to yield the highest level of performance for both systems on this

particular computing testbed. For ROSS, the C memory parameter was set to 2.

In the best case, GTW was given approximately 1.5 times the amount of mem-

ory buffers required by the sequential simulations for large LP configurations and

2 to 3 times for small LP configuration. This amount of memory was determined

experimentally to result in the shortest execution time (i.e., best performance) for

GTW. Larger amounts of memory resulted in longer execution times. This per-

formance degradation is attributed to the memory subsystem being a bottleneck.

Smaller amounts of memory resulted longer execution times due to an increase in

the number of aborted events. (Recall, that when the current event being processed

is unable to schedule a new event into the future due to a shortage of free mem-

ory buffers, that event is aborted (i.e., rolled backed) and re-executed only when

memory is available).

GTW and ROSS use precisely the same priority queue algorithm (Calendar

Queue) [82], random number generator [98] and associated seeds for each LP. The

benchmark application’s implementation is identical across the two Time Warp sys-

tems. Consequently, the only performance advantage that one system has over the

other can only be attributed to algorithmic and implementation differences in the

management of virtual time and memory buffers.

4.3.3 Initial PCS Performance Data

The data for our initial performance comparison between GTW and ROSS

using the quad processor PC server is presented in Figure 4.2. Here, the event rate

as a function of the number of LPs is shown for ROSS, GTW and GTW-OPT.

“GTW” represents the Georgia Tech Time Warp system without proper settings

of the TWMemMap array (i.e., TWMemMap[i][j] = 1∀i, j). “GTW-OPT” uses the

experimentally determined optimal settings for TWMemMap.

For GTW-OPT, this setting was determined to be 50 when i and j are equal
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Figure 4.2: Quad PC Server Performance Comparison: GTW vs. ROSS.
The “GTW” line indicates GTW’s performance without op-
timized memory pool partitioning. “GTW-OPT” indicates
GTW’s performance with optimized memory pool partition-
ing.

and 5 for all other cases. This allocation strategy is very much inline with what one

would expect for this self-initiated simulation model [107]. This ratio for memory

allocation was used for all cases.

We observe that in the comparison, GTW-OPT out performs GTW in all cases.

In the 64x64 case, we see a 50% performance gap between GTW-OPT (400,000

events per second) and GTW (200,000 events per second). These results underscore

the need to find the proper parameter settings for any Time Warp system. In the case

of GTW, the local processor’s free-list (i.e., TWMemMap[i][i] was not given enough

memory to schedule events for itself and a number of aborted events resulted. This

lack of memory caused a severe performance degradation.
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Mem Usage in Buffers Amt Relative to Seq

GTW-OPT 16x16 case 11776 287%
ROSS 16x16 case 6144 150% (seq + 2048)
GTW-OPT 32x32 case 31360 190%
ROSS 32x32 case 18432 113% (seq + 2048)
GTW-OPT 64x64 case 93824 143%
ROSS 64x64 case 67584 103% (seq + 2048)
GTW-OPT 128x128 case 375040 143%
ROSS 128x128 case 264192 100.8% (seq + 2048)
GTW-OPT 256x256 case 1500032 143%
ROSS 256x256 case 1050624 100.2% (seq + 2048)

Table 4.1: Event Buffer Usage: GTW-OPT vs. ROSS. The buffer size
for both GTW and ROSS is 132 bytes.

Now, when GTW-OPT is compared to ROSS, it is observed that ROSS out

performs GTW-OPT in every case except one: the 64K LP case. For ROSS, the

biggest win occurs in the 4K LP case. Here, a 50% performance gap is observed

(600,000 events per second for ROSS and 400,000 for GTW-OPT). However, in the

16K LP case, the gap closes and in the 64K LP cases GTW-OPT is outperforming

ROSS by almost a factor of 4. Two major factors are attributed to this performance

behavior.

For both GTW-OPT and ROSS, the under powered memory subsystem is

a critical source of performance degradation as the number of LPs increase. The

reason for this is because as we increase the number of LPs, the total number of

pending events increase by a factor of 16. This increase in memory utilization

forms a bottleneck as the memory subsystem is unable to keep pace with processor

demand. The 4K LP case appears to be a break point in memory usage. ROSS, as

shown in Table 4.1 uses significantly less memory than GTW. Consequently, ROSS

is able to fit more of the free-list of events in level-2 cache.

In terms of overall memory consumption, GTW-OPT is configured with 1.5

to 3 times the memory buffers needed for sequential execution depending on the

size of the LP configuration. As previously indicated, that amount of memory

was experimentally determined to be optimal for GTW. ROSS, on the other hand,

only allocates an extra 2048 event buffers (512 buffers per processor) over what is
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required by the sequential simulation, regardless of the number of LPs. In fact,

we have run ROSS with as little as 1024 extra buffers (C = 1.0, 256 buffers per

processor) in the 256 LP case. In this configuration, ROSS generates an event

rate of over 1,200,000. These performance results are attributed to the coupling of

Fujimoto’s GVT algorithm for shared memory multiprocessors with memory efficient

data structures, reverse computation and a conventional fossil collection algorithm,

as discussed in Section 4.2.

However, this conventional approach to fossil collection falls short when the

number of LPs becomes large, as demonstrated by 64K LP case. Here, GTW-OPT

is 4 times faster than ROSS. The culprit for this sharp decline in performance is

attributed to the overwhelming overhead associated with searching through 64,000

processed event-lists for potential free-event buffers every 256 times though the main

scheduler loop. It is at this point where the low-overhead of GTW’s “on-the-fly”

approach to fossil collection is of benefit.

To summarize, ROSS executes efficiently so long as the number of LPs per

processor is kept to a minimum. This aspect is due to the ever increasing fossil

collection overheads as the number of LPs grow. To mitigate this problem, “on-

the-fly” fossil collection was considered as a potential approach. However, it was

discovered to have a problem that results in a increase in the amount of memory

required to efficiently execute parallel simulations.

The problem is that a processors ability to allocate memory using the “on-the-

fly” approach is correlated to its rollback behavior. Consider the following example:

suppose we have LP A and LP B that have been mapped to processor i. Assume

both LPs have processed events at TS = 5, 10 and 15. With GTW, processor i’s

free-list of event buffers for itself (i.e., GState[i].PFree[i]) would be as follows

(with the head of the list being on the left):

5.0A, 5.0B, 10.0A, 10.0B, 15.0A, 15.0B

Note how the free-list is ordered with respect to virtual time. Suppose now LP B is
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Figure 4.3: The impact of aborted events on GTW event rate for the 1024
(32x32 cells) LP case.

rolled back and re-executes those events. The free-list will now appear as follows:

5.0A, 10.0A, 15.0A, 5.0B, 10.0B, 15.0B

Observe that because LP B has rolled back and re-executed forward, the free-list is

now unordered with respect to virtual time. Recall that after processing an event it

is re-threaded into the tail of the free-list. This unordered free-list causes GTW to

behave as if there are no free buffers available, which results in events being falsely

aborted. This phenomenon is caused by the event at the head of the free-list not

being less than GVT, yet deeper in the free-list are events with a timestamp less

than GVT.

On-the-fly fossil collection under tight memory constraints can lead to large

variations in GTW performance, as shown in Figure 4.3. Here, the event rate as
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it correlates to the number of aborted events for the 1024 LP case is shown. We

observe the event rate may vary by as much as 27%. This behavior is attributed to

the rollback behavior increasing the “on-the-fly” fossil collection overheads as the

free-list becomes increasingly out-of-order, which leads to instability in the system.

To avoid this large variance in performance, GTW must be provided much more

memory than is required for sequential execution. This allows the free-list to be

sufficiently long such that the impact of it being out-of-order does not result in

aborted events and allows stable, predictable performance.

A solution is to search deeper into the free-list. However, this is similar to

aborting events in that it introduces a load imbalance among processors who are

rolling back more than others (i.e., the more out-of-order a list becomes, the longer

the search for free-buffers). In short, the fossil collection overheads should not be

directly tied to rollback behavior. This observation lead us to the creation of what

we call Kernel Processes (KPs).

4.3.4 Kernel Processes

A Kernel Process is a shared data structure among a collection of LPs that

manages the processed event-list for those LPs as a single, continuous list. The net

effect of this approach is that the tw scheduler function executes forward on an

LP by LP basis, but rollbacks and more importantly fossil collects on a KP by KP

basis. Because KPs are much fewer in number than LPs, fossil collection overheads

are dramatically reduced.

The consequence of this design modification is that all rollback and fossil

collection functionality shifted from LPs to KPs. To effect this change, a new data

structure was created, called tw kp (see Figure 4.1). This data structure contains

the following items: (i) identification field, (ii) pointer to the owning processor

structure, tw pe, (iii) head and tail pointers to the shared processed event-list and

(iv) KP specific rollback and event processing statistics.

When an event is processed, it is threaded into the processed event-list for a

shared KP. Because the LPs for any one KP are all mapped to the same processor,

mutual exclusion to a KP’s data can be guaranteed without locks or semaphores.
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In addition to decreasing fossil collection overheads, this approach reduces memory

utilization by sharing the above data items across a group of LPs. For a large con-

figuration of LPs (i.e., millions), this reduction in memory can be quite significant.

For the experiments done in this study, a typical KP will service between 16 to 256

LPs, depending on the number of LPs in the system. Mapping of LPs to KPs is

accomplished by creating sub-partitions within a collection of LPs that would be

mapped to a particular processor.

While this approach appears to have a number of advantages over either “on-

the-fly” fossil collection or standard LP-based fossil collection, a potential drawback

with this approach is that “false rollbacks” would degrade performance. A “false

rollback” occurs when an LP or group of LPs is “falsely” rolled back because another

LP that shares the same KP is being rolled back. As we will show for this PCS

model, this phenomenon was not observed. In fact, a wide range of KP to LP

mappings for this application were found to result in the best performance for a

particular LP configuration.

4.3.5 Revised PCS Performance Data

Like the previous set of experiments, ROSS utilizes the same settings. In

particular, for all results presented here, ROSS again only uses 2048 buffers above

what would be required by the sequential simulator.

In Figure 4.4, we show the impact of the number of kernel processes allocated

for the entire system on event rate. This series of experiments varies the total

number of KPs from 4 to 256 by a factor of 2. In the 4 KP case, there is one “super

KP” per processor, as our testbed platform is a quad processor machine. We observe

that only the 256 (16x16) and the 1024 (32x32) LP cases are negatively impacted

for a small number of KPs. All other cases exhibit very little variation in event rate

as the number of KPs is varied. These flat results are not what we expected.

If we look at the aggregate number of rolled back events, as shown in Figure 4.5,

for the different LP configurations, we observe a dramatic decline in the number

of rolled back events as the number of KPs is increased from 4 to 64. So, then

why is performance flat? The answer lies in the fact that we are trading rollback
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Figure 4.4: Impact of the number of kernel processes on ROSS’ event
rate.

overheads for fossil collection overheads. Clearly as we increase the number of KPs,

we increase fossil collection overheads since each processor has more lists to sort

through. Likewise, we are also reducing the number of “false rollbacks”. This

trade-off appears to be fairly equal for KP values between 16 and 256 across all LP

configurations. Thus, we do not observe that finding the absolute best KP setting

being critical to achieving maximum performance as was finding the best TWMemMap

setting for GTW. We believe this aspect will allow end users to more quickly realize

top system performance under ROSS.

Looking deeper into the rollback behavior of KPs, we find that most of the

rollbacks are primary, as shown in Figures 4.6 and 4.7. Moreover, we find that as

we add KPs, the average rollback distance appears to shrink. We attribute this

behavior to a reduction in the number of “falsely” rolled back events as we increase
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Figure 4.5: Impact of the number of kernel processes on events rolled
back.

the number KPs.

As a side note, we observe that as the number of LPs increase from 256 (16x16

case) to 64K (256x256 case), the event rate degrades by a factor of 3 (1.25 million to

400,000), as shown in Figure 4.4. This performance degradation is due to the sharp

increase in memory requirements to execute the large LP configurations. As shown

in Table 4.1, the 64K LP case consumes over 1 million event buffers, where the 256

LP case only requires 6,000 event buffers. This increase in memory requirements

results in higher cache miss rates, placing a higher demand on the under-powered

memory subsystem, and ultimately degrades simulator performance.

The performance of ROSS-OPT (best KP configuration) is now compared to

that of GTW-OPT and ROSS without KPs in Figure 4.8. We observe that ROSS-

OPT outperforms GTW-OPT and original ROSS across all LP configurations, thus
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Figure 4.6: Impact of the number of kernel processes on total rollbacks.

under scoring the performance benefits of Kernel Processes. In the 64K (256x256)

LP case, ROSS-OPT using 256 KPs has improved its performance by a factor of 5

compared to original ROSS without KPs and is now 1.66 times faster than GTW-

OPT. In the 16K (128x128) LP case ROSS-OPT using 64 KPs is 1.8 times faster

than GTW-OPT. These significant performance improvements are attributed to

the reduction in fossil collection overheads. Moreover, KPs maintain ROSS’ ability

to efficiently execute using only a small constant number of memory buffers per

processor greater than the amount required by a sequential simulator.

4.3.6 Robustness and Scalability Data

In the previous series of experiments, it is established that ROSS (with KPs)

is capable of efficient execution and requires little optimistic memory to achieve that
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Figure 4.7: Impact of the number of kernel processes on primary roll-
backs.

level of performance. However, the PCS application is a well behaved and generates

few remote messages. Moreover, the last series of experiments only made use of a 4

processor system. Thus, two primary questions remain:

• Can ROSS with little optimistic memory execute efficiently under “thrashing”

rollback conditions?

• Can ROSS’ performance scale as the number of processors increase?

To address these questions, we present the results from two additional series

of experiments. The first series examines the performance of ROSS under almost

pathological rollback conditions using the rPHOLD synthetic benchmark on the

quad processor PC server. The second series examines scalability using the PCS

application on the Origin 2000 multiprocessor. Here, the performance of GTW
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Figure 4.8: Performance Comparison: ROSS-OPT with KPs (best
among those tested), “GTW-OPT” indicates GTW’s per-
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from [3] is used as a metric for comparison. We begin by presenting the rPHOLD

results.

For the rPHOLD experiments, the number of LPs vary from 16 to 16K by a

factor of 4. Recall that the number of messages per LP is fixed at 16. For the 16

LP case, there is 1 LP per KP. For larger LP configurations, up to 16 LPs were

mapped to a single KP. GV Tinterval and batch parameters vary between 8, 12 and

16 simultaneously (i.e., (8, 8), (12, 12) and (16, 16) cases). Thus, the number of

events processed between each GVT epoch ranged between 64, 144 and 256. C = 4

determined the amount of optimistic memory given to each processor. Thus, in the

(8, 8) case, 256 optimistic memory buffers were allocated per processor.
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Figure 4.9 shows the best speedup values across all tested configurations as a

function of the number of LPs. For configurations as small 16 (4 LPs per processor),

a speedup of 1.1 is reported. This result was unexpected. As previously indicated,

to the best of our knowledge, no Time Warp system has obtained a speedup on

this pathological benchmark configuration. The number of remote messages is so

great (75% of all events processed were remote) combined with the small event

granularity and high-speed Pentium III processors that rollbacks will occur with a

great frequency.

As the number of LPs increase to 1024, we see a steady increase in overall

speedup. The largest speedup is 2.4. However, for the 4K and 16K LP cases, we see

a decrease in speedup. This behavior is attributed to the under powered memory
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subsystem of the PC server not being able to keep pace with the increased memory

demand caused by the larger LP configurations. For example, the 1024 LP case

has only 16K messages whereas the 16K LP case has 256K messages or 16 times

the event memory buffer requirements. As previously indicated, this server only has

300MB/second of memory bandwidth.
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Figure 4.10: rPHOLD Event Rate for ROSS-OPT across different GVT-
interval and batch parameter settings.

The limited memory bandwidth problem aside, these overall speedups are due

to lower GV Tinternal and batch settings reducing the probability of rollback. As

shown in Figure 4.10, we observe that event rate improves as the GV Tinternal and

batch parameters are reduced from values of 16 to 8 for the 16 LP case. Here,

performance improves by almost 60%. The reason performance improves for lower

GV Tinternal and batch settings is because by reducing these settings the frequency

with which the scheduler “polls” for rollback-inducing positive and anti-messages
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of “committed” (i.e., not rolled back) events to total events
processed, which includes events rolled back.

increases. Thus, by checking more frequently, a potential rollback is observed by

the Time Warp system much sooner or even prevented, which ultimate increases

simulator efficiency, shown in Figure 4.11. Here, we see that for the (16, 16) case,

efficiency is under 60% for 16 LPs, but raises to over 80% in the (8, 8) cases, which

is a 33% increase in simulator efficiency.

Looking at the 64 LP case, we observe the different GV Tinternal and batch

settings fail to yield any difference in event rate. This phenomenon is due to an

even trade-off between increasing rollbacks and the overheads incurred due to the

increased frequency with which GVT computation and fossil collection are done. If
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we look at Figure 4.11, we see a variance of 3% in simulator efficiency among the 3

parameter configurations, with the (8, 8) case being the best. However, this slight

increase in efficiency comes at the price of computing GVT and fossil collection more

frequently.

As the LP configurations grow to 256 and 1024 LPs, peak speedup is obtained

(Figure 4.9). Here, we observe a 95+% efficiency (Figure 4.11). The reason for

this increase in efficiency and speedup is because each processor has a sufficient

amount of work per unit of virtual-time. This increase in work significantly lowers

the probability a rollback will occur.

For the larger 4K and 16K LP configurations, event rate, like speedup, de-

creases, however, the efficiency in these configurations is almost 99%. So, if rollbacks

are not the culprit for the slowdown in performance, what is? Well, again, for these

large configurations, the demand for memory has overwhelmed the under powered

PC server, thus, the processors themselves are stalled waiting on memory requests

to be satisfied.

In this final series of experiments, ROSS’ ability to scale on larger processor

configurations is examined. Here, we compare the performance of ROSS to GTW

from what was reported in [3] on the SGI Origin 2000. For this scalability com-

parison, the PCS application is used. This time, PCS is configured with 14400 LPs

(120x120 cell configuration). This size allows an even mapping of LPs to processors

across a wide range of processor configurations. Here, we report our findings for 1,

2, 3, 4, 5, 6, 8, 9 and 10 processors. The number of subscribers per LP is increased

to 100, making the total message population over 1.4 million. Again, both GTW

and ROSS are using reverse computation.

In terms of memory utilization, GTW allocates 360 MB of memory to be used

for event processing. This was determined to be experimental the best configura-

tion for GTW. Because of the large amount of memory allocated, GTW had to

be compiled such that a 64 bit address was available. ROSS is configured with

GV Tinterval = 16 and batch = 16 and C = 8 for all runs. We increase C to com-

pensate for the additional time it would take to compute GVT for larger processor

configurations. In total, between 0.3% and 1.4% extra memory is allocated over
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what is required by the sequential simulator to support optimistic processing. This

yields a maximum memory usage of only 176 MB for the 10 processor configuration

and is less than half the memory given to GTW. Because ROSS’ memory consump-

tion is significantly lower, the simulation model fits within a 32 bit address space.

We note that the GTW’s performance data was collected on an Origin 2000

with 8 MB of level-2 cache. ROSS’ performance data was collected on an SGI

Origin 2000 with only 4 MB of level-2. Thus, the machine used by GTW has

some performance advantage over the Origin 2000 used for ROSS’ experiments.

This advantage, however, is negated due to GTW being compiled for 64-bit address

space (i.e., loads and stores and address calculations are done on 64 bits and not
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32).

In Figure 4.12, the event rate for both ROSS and GTW are reported as a func-

tion of the number of processors used. Here, we find a similar picture to what was

seen on the quad processor PC server. ROSS is significantly faster than GTW across

all cases. In the optimized sequential case, ROSS is over 2 times faster. Here, both

GTW and ROSS’ event schedulers have been reduced to only support sequential

execution. All GVT, fossil collection functionality has been striped away. Events

are committed as soon as they are processed. Consequently, the only difference

between these two are they way in which each system manipulates its core data

structures. As previously described, ROSS implements a bottom-up, pointer-based

design which facilitates better data locality. We believe this increase in locality is

the cause for the increase in performance over GTW.

For the multiprocessor runs, ROSS is able to scale to a speedup of 8.4 on 10

processors and consistently outperforms GTW in every case. The 5 processor case is

where the largest gap in performance occurs between ROSS and GTW. Here, ROSS

is 2 times faster than GTW. In the 10 processor case, ROSS is 1.6 times faster than

GTW.

Finally, we observe in the multiprocessor cases, GTW’s partitioned buffer

scheme [91] does not appear to be a factor on the Origin 2000 architecture. This

scheme was originally designed to avoid the “false” sharing of memory pages on the

KSR ALL-CACHE shared-memory multiprocessor system. The Origin’s distributed

memory is organized completely different and provides specialized hardware support

for memory page migration [97]. ROSS only utilizes a single free pool of memory

and those buffers can be sent to any processor, which on the KSR would cause a

great deal of false sharing. ROSS, however, on the Origin 2000 appears to scale well

and does not appear to suffer from unnecessary memory management overheads.

We believe efficient, hardware assisted page migration combined with the directory

based cache-coherence and memory pre-fetching is allowing ROSS to achieve scalable

performance without having to resort to more complex buffer management schemes,

which can complicate a parallel simulator’s design and implementation. However,

more experimentation is required before any definitive conclusions can be drawn.
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4.4 Related Work

The idea of Kernel Processes is very much akin to the use of clustering as

reported in [80, 83, 89], and [109]. Our approach, however, is different in that it is

attempting to reduce fossil collection overheads. Moreover, KPs , unlike the typical

use of clusters, are not scheduled in the forward computation and remain passive

until rollback or fossil collection computations are required.

Additionally, while low memory utilization is experimentally demonstrated,

we do not consider KPs to be an adaptive approach to memory management, as

described by [86] and [87]. KPs is a static approach that appears to yield similar

reductions in memory requirements when combined with an efficient GVT algorithm.

In addition to “on-the-fly” fossil collection, Optimistic Fossil Collection (OFC)

has been proposed [116]. Here, LP states histories are fossil collected early without

waiting for GVT. Because we are using reverse computation, complete LP state

histories do no exist. Thus, this technique will not immediately aide in ROSS’

approach to fossil collection.

4.5 Summary

The design and implementation of a stable, highly-efficient new Time Warp

system is presented. For the first time, it is shown that this system generates

excellent performance using only the minimal additional memory required to sustain

efficient optimistic execution. This high-performance, low-memory system is the

result of combining several key technical innovations:

• pointer-based, modular implementation framework,

• Fujimoto’s GVT algorithm [90],

• reverse computation, and

• the introduction of Kernel Processes(KPs).

It was shown that KPs lower fossil collection overheads by aggregating processed

event lists. This aspect allows fossil collection to be done with greater frequency,
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thus lowering the overall memory necessary to sustain stable, efficient parallel exe-

cution.

In the performance demonstration, two applications are used: PCS and a

pathological synthetic workload model, rPHOLD; and two different parallel com-

puting platforms are used: quad processor PC server and the SGI Origin 2000. For

PCS, it was shown that ROSS is a scalable Time Warp system that is capable of

delivering higher performance using little optimistic memory. For rPHOLD, ROSS

demonstrates that even under harsh rollback and memory limited conditions, good

speedups are obtainable. These characteristics make ROSS an ideal system for use

in large-scale networking simulation models.

In re-examining the performance data from a higher level, it appears that

low-memory utilization and high-performance are no-longer mutually exclusive phe-

nomenon on Time Warp systems, but instead complement one another. On to-

day’s almost infinitely fast microprocessors, the parallel simulator that “touches”

the least amount of memory will execute the fastest. For the experiments conducted

in this study, ROSS “touched” much less memory than GTW due to its structural

and implementation organization. We anticipate the trend of memory utilization

determining system performance to continue until new architectural and software

techniques are developed that breaks down the “memory wall”.

In an attempt to reduce the number of systems parameters, we have artificially

linked GVT computation and fossil collection frequency to “loops” through the main

scheduler via the GV Tinternal parameter. This parameter, inconjunction with batch,

also determines how frequently the incoming messages queues are “polled”. The

performance data shows that more frequent polling of these queues can greatly

increase simulator efficiency when the rollback probability is high. In the future, we

would like to explore the decoupling of GVT and fossil collection computations from

these parameters and instead make them completely dependent on the availability of

memory. Our belief is that simulator performance will increase for lower GV Tinterval

and batch settings over what has been presented here.



CHAPTER 5

Seven O’Clock: A New Distributed GVT Algorithm Using

Network Atomic Operations

At the heart of an optimistic parallel simulation system is the ability to reclaim

memory from its virtual time past and re-use it to schedule future events as well

as support state-saving operations as part of speculative event processing. Global

virtual time (GVT) defines a lower bound on any unprocessed event in the system

and defines the point beyond which events should not be reclaimed. Thus, it is

imperative that the GVT computation operate as efficiently as possible.

Global virtual time (GVT) algorithms must solve two key problems. The

first is the transient message problem. Here, a message is delayed in the network

and neither the sender nor the receiver consider that message in their respective

GVT calculation. Thus, a GVT algorithm must account somehow for all messages

scheduled. The second problem is called simultaneous reporting. This problem

arises “because not all processors will report their local minimum at precisely the

same instant in wall-clock time” [73]. Here, the underlying assumption is that

event processing is allowed to continue asynchronously during the GVT computation

which enables better overall parallel performance.

Asynchronous GVT algorithms rely on the ability to create a “cut” across

the distributed simulation that divides events into two categories: past and future

[73, 74]. GVT is then defined by the lower bound on unprocessed events in the

“past” of the cut, which is in effect an estimate of the true GVT since events are

being processed during its computations. Creating a cut can be done in several

ways depending on the architecture of the machine(s) being used. For distributed

computing platforms, the primary method of creating a “cut” is via message-passing

as was defined by Mattern [74]. Here, messages are sent such that at most two

cuts are made. The first cut signals the “start” of the GVT computation. The

second cut, if needed based on message counts computed in the first cut, consider

any transient messages discovered from the first cut. Please note, that these cuts

94
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need not be consistent. A consistent cut is defined as a cut where there is no

message that was scheduled in the future of the sending processor but received in

the past of the destination processor. These messages can be ignored because by

definition they must be scheduled at a time that is greater than GVT computed

using a consistent cut. The “cuts”, while not consistent, effectively divide past from

future in a causally consistent manner to solve the simultaneous reporting problem.

Additionally, because of the use of message counts, it is able to determine if a second

“cut” round is needed and traps any transient messages.

In contrast, a shared memory multiprocessor greatly simplifies the GVT al-

gorithm. Fujimoto’s GVT algorithm [75] generates a cut by setting a global flag

positive. In a shared memory system this operation is observed on all processors

in a causally correct order because the underlying hardware memory management

mechanism ensures that no two processors will observe different orderings of memory

references to a shared variable. Shared memory multiprocessor systems that adhere

to this memory ordering model are called sequentially consistent [76]. The impact

this memory model has on a GVT algorithm are that: (i) no messages are lost

which prevents the transient message problem, and (b) the simultaneous reporting

problem is solved because all processor effectively “observe” the start of the GVT

calculation at the same instant of wall-clock time.

The motivation behind our research here is the question: Is there a method

to achieve some of the benefits of sequentially consistent shared memory but in a

loosely coordinated, cluster computing environment? The answer turns out to be

yes. We formalize the idea of a network atomic operation (NAO), which enables

a zero-cost cut mechanism which greatly simplifies GVT computations in a clus-

ter computing environment. We demonstrate its reduced complexity by extending

Fujimoto’s shared memory algorithm to operate across a cluster of shared-memory

multiprocessors (SMP).

5.1 Fujimoto’s GVT Algorithm and NAOs

We begin with an overview of Fujimoto’s GVT algorithm, as shown in Algo-

rithms 1 – 5. Please note, there are minor modifications from the original algorithm
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Algorithm 1 Fujimoto’s Shared Memory GVT Algorithm: Variable Definitions.
Global Variables
int gvt flag;
lock t gvt lck; /* mutual exclusion variable */
int gvt interval; /* number of time thru batch loop */
virtual time t lvt[npe]; /* LVT of each processor */
virtual time t gvt;

Processor Private Variables
virtual time t send min ts;

Algorithm 2 Fujimoto’s Shared Memory GVT Algorithm: Initiate GVT
Steps to Initiate GVT within Scheduler Loop

if(this processor is the MASTER) {
gvt_cnt++;
if( gvt_cnt >= gvt_interval AND
processor status is GVT_NORMAL)
{
gvt_cnt = 0;
if(gvt_flag == -npe)
{
lock(&gvt_lck);
gvt_flag = npe;
unlock(&gvt_lck);

}
set processor status to GVT_COMPUTE;

}

} else if (gvt_flag > 0 AND processor status is GVT_NORMAL) set
processor status to GVT_COMPUTE;

Algorithm 3 Fujimoto’s Shared Memory GVT Algorithm: Receive Events
Steps to Receive Events and Anti-messages within Scheduler Loop

move positive messages from shared memory message queue to
processors priority queue. process any rollbacks. remove
anti-messages from shared memory ‘‘cancel’’ queue. process any
message cancellations and rollbacks.

presented in [75], but the correctness and efficient execution is preserved. These 5

parts are described as follows:

1. Variables (Algorithm 1): The key shared variable is the gvt flag, which

contains a mutual exclusion variable, gvt lck.
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Algorithm 4 Fujimoto’s Shared Memory GVT Algorithm: Compute GVT
Steps to Compute GVT Once Initiated within Scheduler Loop

if( processor status is GVT_COMPUTE ) {
set processor status to GVT_WAIT
lvt[my_pe] = min(send_min_ts, smallest event in priority queue);
lock(&gvt_lck);
gvt_flag--;
if( gvt_flag == 0)
{
gvt = min( lvt[0] ... lvt[npe-1] );
gvt_flag = -1;
set processor status to GVT_NORMAL;
reset send_min_ts to max time value;
unlock(&gvt_lck);
collect processed events and state < GVT;
if( gvt > end time of simulation ) goto DONE;

} else
{
unlock(&gvt_lck);
set processor status to GVT_WAIT;

}
} else if( processor status is GVT_WAIT AND gvt_flag < 0 ) {
lock(&gvt_lck);
gvt_flag--;
unlock(&gvt_lck);
if( gvt > end time of simulation )
goto DONE;

collect processed events and state < GVT;
set processor status to GVT_NORMAL;
reset send_min_ts to max time value;

}

2. Initiate GVT (Algorithm 2): The algorithm is initiated when the “master”

processor iterates through the event scheduler loop gvt interval times before

setting the gvt flag equal to the number of processors (i.e., npe). Here is

where the algorithm exploits the sequentially consistent memory properties.

Every processor will “observe” the start of the GVT at the same instant in wall-

clock time. More precisely, once the flag has been set, any other messages sent,

are the responsibility of the sender, as shown in Algorithm 5. This provides

a true separation between events in the logical past and logical future. When
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Algorithm 5 Fujimoto’s Shared Memory GVT Algorithm: Process and Schedule
Events.
Steps to Process and Schedule Events within Scheduler Loop

Process smallest event in priority queue;
if( sending a new event during event processing )
{
enqueue message on destination processor’s receive queue;
if( gvt_flag > 0 and processor status is NOT GVT_WAIT )

send_min_ts = min( send_min_ts, time-stamp of new event);
}

DONE: compute parallel simulation stats and exit.

another processor observes the start of a GVT computation, it changes its

status to “needs to compute an local virtual time (LVT)” This is denoted by

send min ts.

3. Receive Events (Algorithm 3): Here, new events and anti-messages are

processed from arrival queues shared between processors. Each processor has

its own externally exported queue that all other processors use to send events.

A mutual exclusion lock is used around the queue to correctly serialize the ar-

rival of either new events or anti-messages. Because of sequentially consistent

memory, no message can be lost “in the network” and so the transient mes-

sage problem is intrinsically solved. Observe that this “receive” and process

rollbacks and anti-messages is a necessary step prior to computing any part

of the GVT. It is also a normal step in every iteration through the scheduler

loop.

4. Compute GVT (Algorithm 4): Once the new events and anti-messages are

processed, each processor computes its local virtual time (LVT) value, which

is the smallest unprocessed event that it is “aware” of, which includes any

events it sent after the gvt flag was set. This is denoted by send min ts.

The last processor to compute its LVT also computes the minimum among all

LVTs, which becomes the new GVT value. To inform other processors that

the new GVT value is available, the gvt flag is set to negative one. The last
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Algorithm 6 gvt interval is a predefined number of iterations, and gvt count is
the current number of iterations.
CPU 0:

a. If(gvt_interval == gvt_count)

b. set gvt_flag positive

CPU 1:

c. if(gvt_flag)

d. start processing LVT

processor never “waits” for the GVT value and skips that state, while all other

processors move to the “asynchronously waiting for GVT” state.

5. Process Events (Algorithm 5): In this last step, forward event processing

commences. Here, the smallest event is removed from the pending event set

and processed. If a new event is scheduled and the gvt flag has been set

greater than zero and the LVT value has not been reported (i.e., the processor

should not be in the “wait” state), then it means this processor must consider

this event in its LVT computation.

5.2 Network Atomic Operations

To directly extend Fujimoto’s GVT algorithm to a network of machines, would

require a sequentially consistent distributed memory model, similar to what is pro-

vided in a shared memory system. As we described above, each processor observes

the “start” of the GVT computation at the same wall clock time because of sequen-

tially consistent memory. In reality, a processor attempting to read the flag may be

stalled while the underlying system updates the local cache with the correct value

of the flag. Consider the following abstracted view of the algorithm run in parallel

on an SMP machine as shown in Algorithm 6.

Running this code on a single processor defines the sequential consistency. The

statements could be ordered on a single CPU as O = {a, b, c, d}. In this case both

CPU 0 and 1 would begin computing GVT. However, if we change the interleaving

of instructions to O = {a, c, b, d} then the GVT computation would only begin on

CPU 0. CPU 1 would begin processing more events, but when an event is sent,
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Algorithm 7 Here, gvt interval redefined as a measure of time usually in clock
cycles, and not defined as the number of batch round through the scheduler.
CPU 0:

a. if(local clock time >= gvt_interval)

b. start computing GVT

CPU 1:

c. if(local clock time >= gvt_interval)

d. start computing GVT

the gvt flag would be checked per the algorithm to ensure the sender correctly

accounts for events during the GVT computation. The instruction, call it e, would

then be accounted for by CPU 1 because e occurred after instruction b, and the

consistent cut is properly formed.

NAOs provide a similar functionality in a distributed system, however they

are clock-based and not memory or state-based. The general concept is that

an operation may occur atomically within a network of machines if all

machines “observe” the event at the same instant of wall clock time. This

functionality can be implemented on modern processors because most now provide

a time-stamp counter, or clock-cycle counter for performance measuring, such as the

rdtsc instruction on all x86 series processors [49]. So we can compute wall-clock

time based off of each processor’s time-stamp counter and synchronize these counters

to a common view of wall clock time. Calls to reading the CPU clock adhere to

the principles of a sequentially consistent memory model because wall clock time is

consistent across all processors. Consider the following clock-based approach shown

in Algorithm 7.

If we again attempt to create a sequential ordering of instructions, it becomes

obvious that any permutation is guaranteed to be consistent. Consistency is guar-

anteed because instructions a and c in Algorithm 7 will evaluate to true if and only

if the same instance of wall clock time has passed for each CPU. Because we can

only read the current wall-clock time (as measured in clock cycles), any permutation

of the possible orderings is valid because wall clock time is assumed to be same for

all processors. There are limitations which we will discuss later in Section 5.3.3.
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So NAOs may be characterized as a subset of the possible operations provided

by a complete sequentially consistent memory model. For example, NAOs can only

occur at predefined intervals, not dispersed throughout the timescale of the running

application. Not only must NAOs occur at agreed upon intervals, but they must

also take on a specific meaning or value. In the case of the GVT algorithm, we use

NAOs to generate a consistent cut. The system is either in a GVT computation, or

it is not. Further, GVT computations occur at a predefined frequency through the

runtime of the application. An NAO cannot be used to give some global variable

any value, because the only global variable in an NAO is wall clock time. However,

any sequence of operations can be performed once the clock has been read.

5.2.1 Clock Synchronization

The heart of a network atomic operation is the assumption that all processors

share a highly accurate, common view of wall-clock time. For this to occur, each

processor’s time-stamp or cycle-counter must be synchronized in some fashion. This

is a well researched problem in distributed computing. The most recent, relevant

result for our operating environment is by Ostrovsky and Patt-Shamir [32]. Here,

the present provably optimal clock synchronization scheme where the clocks have

drift and the message latency may be unbounded. Previous to this result, all other

optimal results were based on non-drifting clocks. Moreover, they suggest that

operational clock synchronization algorithms need not be general and “that they

should work for the particular system in which they are deployed”. We take this

view here. In particular, because of the time-scale of the clock is 1,000 times greater

than message sends (i.e., nanoseconds vs. microseconds), clock drift rates can largely

be ignored here.

Additionally, since our contribution is not about clock synchronization algo-

rithms, we used a simplified approach. To synchronize the clocks across all proces-

sors, we use a network barrier. Here, a master time keeper sends a synchronization

message to each node, which responds back with its local time-stamp-counter. The

master time keeper then sends a message to each processor with an appropriate

time-stamp counter value that would be when in real-time measure in cycles the
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first GVT is to occur. Upon receipt of that message, each processor is released from

the barrier and begins processing events. We recognize that for a large 1000 proces-

sor cluster, this approach has some scalability limitations. For such an operating

environment, we would implement Ostrovsky and Patt-Samir algorithm [32].

5.3 Seven O’Clock GVT Algorithm

We can now give a definition of a network atomic operation:

Definition: An NAO is an agreed upon frequency in wall-clock time at which

some event is logically observed to have happened across a distributed system.

Each processor in the system uses the NAO to determine the current state of

the system depending upon the logical meaning of the NAO. For example, we use

an NAO to determine if a GVT computation has been started. There is no actual

global variable, such as the gvt flag in Algorithm 2, which signals the start of the

GVT. Instead, we simply compute GVT every n units of wall-clock time.

We have affectionately call this algorithm the “Seven O’clock Algorithm”.

Seven O’clock comes from the idea that if we could have synchronized wall clocks

on each network node, then we could simply compute GVT at well-defined inter-

vals, i.e., every minute starting from seven o’clock, where seven o’clock is simply the

start time of the scheduler. During the discussion of this algorithm we assume that

each processor’s timestamp counter is perfectly synchronized with all of the other

counters. We introduce the complexity of clock drift and jitter at the end.

As we previously indicated, if one were to open up the underlying hardware

implementation of a sequentially consistent shared memory system, a number of

messages would be observed being passed over the memory bus between memory

and cache modules. Also, any memory reads to a shared location could be blocked

while waiting for the memory address to be made consistent. In particular, these

consistency messages would either be well synchronized in time over a memory

bus or acknowledged over a network depending on the architecture [77, 78]. Be-

cause we assume a distributed message passing system without acknowledgments,

we need some additional information about the communications environment to

avoid the transient message problem (i.e., events lost in the network). This prob-
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Figure 5.1: States of the Seven O’Clock Algorithm:

lem can be overcome by adding a small amount of time to the NAO expiration,

max send delta t.

Definition: max send delta t is a worst case bound on the time to send an

event through the network.

This delta allows for the sending processor to account for remotely sent events

which may cross the cut boundary. Note that this is not the same as delta causality

which allows for excessively old events to be discarded. While it may seem un-

reasonable to assume such a value can be determined in practice, current cluster

computing networks rely on high-speed switching fabrics. These fabrics typically

have extremely low loss probabilities (1e − 12 or less) and can typically support

the full bandwidth of all ports. Consequently, the worst case is experimentally

computable and does not vary greatly from the average case.

The states of the Seven O’Clock algorithm are shown in Figure 5.1 and are

discussed below.

• State A: Events are processed normally and not accounted for in GVT com-

putation. This is no different from Fujimoto’s GVT Algorithm.

• GVT “start”: The NAO signals the consistent start of the GVT to all

processors, just as setting the gvt flag in Fujimoto’s algorithm.

• State B: Events sent during the max send delta t interval are accounted

for on the sending side. This is similar to how Fujimoto’s Algorithm uses
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gvt flag to capture events the receiving processor might not consider in the

sender’s LVT computation. Here, our algorithm reads the processor’s local

cycle counter, determines if it is within the max send delta t time of a GVT

computation. If it is, then it captures this event’s timestamp against the

minimum of any previously scheduled events during the max send delta t

time.

• State C: Processors compute LVT by taking min(unprocessed events, events

sent during B). This is identical to Fujimoto’s GVT Algorithm.

• State D: Node 1 is first to complete local GVT algorithm and propagates

this value to other nodes.

• State E: Node 0 completes it’s local GVT algorithm and receives Node 1’s.

It takes the minimum of the two and retransmits this value back to Node 1.

The other processors check for the new GVT value at some point in the future

and read the value from the shared memory. The processors return to state

A.

The only other differences between Fujimoto’s GVT algorithm and Seven-

O’Clock are: (a) physically receiving messages and (b) physically sending messages.

In the receiving step (Algorithm 3), all remotely sent new event messages and anti-

messages are read from a communications channel, such as a socket. This is in

addition to the shared memory queuing structures. From the standpoint of the GVT

algorithm, it captures messages sent over either communications medium. Likewise,

when a message is sent, the algorithm does not differentiate between which events

are shared memory or off-system messages.

5.3.1 Proof of Correctness

As previously noted, in order for a GVT algorithm to operate correctly, it

must solve the transient message and simultaneous reporting problems.

First, we assume all processors clocks are perfectly synchronized and there are

no clock drift or jitter problems. We will relax this constraint later.
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Figure 5.2: Simultaneous Reporting Problem: Source and destination
processors see the cut being created at the same instant in
wall clock time, so there is no opportunity for an event to
“slip between the cracks”.

Proof: To prove that a transient message cannot occur, assume that a tran-

sient message occurs in the scheduler. Then the time to send the event must be

greater than the max send delta t. But by definition max send delta t is a worst-

case bound on the time to send an event. This leads to a contradiction because the

transient event took longer to send than the worst-case bound.

Next, the simultaneous reporting problem occurs when all processors do not

begin computing their local minimum at the same instant. In fact, this is exactly

what happens in the Seven O’clock algorithm. Because the consistent cut is gener-

ated using an NAO, each processor in the distributed system begins accounting for

messages at precisely the same instant in wall clock time. Therefore this problem

does not occur in this GVT algorithm as shown in Figure 5.2.

Theorem: The simultaneous reporting problem cannot occur in a system

where a consistent cut is defined across all processors at precisely the same instant

in wall clock time.

Proof: Assume to the contrary that the simultaneous reporting problem can
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occur.

CASE 1: Assume each processor’s clock is perfectly synchronized with all

other processor clocks. For the simultaneous reporting problem to occur, at least

two processors must have different views of wall clock time. This is a contradiction

because there only exists one notion of wall clock time.

CASE 2: Each processor’s clock is synchronized with some degree of error,

which is bounded by epsilon. In order for the problem to occur now, at least two

processors must have different views of wall clock time, which differs by at most

epsilon. This means that in epsilon time between two processors, a message was

sent which was not accounted for. This is a contradiction because it is not possible

to send a message in epsilon time and not account for the event being sent. Consider

the steps for remote sending of events:

1. Send the event.

2. Read local time-stamp clock.

3. If time now + max send delta t >= gvt interval, then account for the event.

Since epsilon is a value far less than max send delta t, we must always account

for the sent event. In the event that epsilon >= max send delta t, we simply

change our max send delta t to have a larger value to overcome epsilon.

5.3.2 Problems with Clock-Based Algorithms

While the discussion of clock synchronization and its associated problems are

outside of the scope of this thesis, the Seven O’clock algorithm does provide a

mechanism to solve each of these problems. Three problems arise in any clock-

based algorithm: drift, jitter and synchronization error. During the course of a

simulation, clocks may drift together, or apart. In the later case, this can lead to

a gradual disparate view of time. Clock jitter occurs when a time is discretized

and the width of the time units is not uniform. This can be a cause of clock drift

over time depending on the frequency and size of the jitter. Finally, it is difficult to

synchronize clocks to a high degree of granularity. This can lead to two processors
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Figure 5.3: Eliminating Clock Drift and Clock Synchronization Errors.
The two processors are maximally misaligned. The remotely
sent event cannot cross the cut boundary without being ac-
counted for by the sender.

being synchronized, but off by an indeterminate amount. Each of these problems

can be dealt with in the Seven O’Clock algorithm by adjusting the definition of

max send delta t. Recall that this value is a worst-case bound on the time to send

an event between two processors.

We now redefine max send delta t as the maximum of:

1. worst-case bound on events sends

2. two times the synchronization error

3. two times the maximum clock drift during execution

The max send delta t parameter is simply an adjustment to the NAO to com-

pensate for in-transit events that the sender must account for if they will not be

received prior to the NAO expiring at the receiver. It can also be used to overcome

the above mentioned problems when they are larger than of the maximum send
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time. In Figure 5.3, two processors have drifted as far apart as is possible for a

given run. As long as max send delta t is twice the maximum drift, it is possible

for the sending processor to account for the event. In practice these values are sev-

eral orders of magnitude smaller than the maximum time to send an event through

the network, and can be safely ignored.

5.3.3 Limitations

Two issues arise from the introduction of the Seven O’clock algorithm that

do not exist in other GVT algorithms. Both stem from the general problem which

is that the Seven O’clock GVT algorithm cannot be “forced”. First, GVT must

advance for a simulation to determine that the simulation must end. In the ROSS

parallel scheduler this happens quickly because events to be scheduled past the end

time are not processed and the GVT interval counter climbs quickly so that GVT

may be computed when the system is effectively out of events. The Seven O’clock

algorithm cannot be forced because each node must wait for the NAO to expire. At

the end of a simulation, the ROSS system has no events scheduled for processing,

and is simply waiting for the CPU to compute the next GVT interval. This situation

cannot be aborted early because each network node is unaware of other nodes still

actively processing events. The time wasted is bounded in the worst case by the

size of the GVT interval. It is reasonable to expect this value to be small in relation

to the overall time spent in execution, and so we do not consider this to be a major

loss because it can be effectively amortized away.

The fact we cannot force a GVT computation leads to the second limitation

to the system. When all of the free events were consumed in the ROSS parallel

scheduler, we were previously able to “jump” the GVT interval counter and force a

GVT computation to occur. Refreshing the GVT value meant that we could reclaim

at least one additional event in the system and continue forward processing. When

free events are exhausted in the ROSS distributed scheduler we can no longer force

GVT, and so must simply wait for the next GVT interval to pass. This problem

occurs when we do not have sufficient optimistic memory to continue forward exe-

cution. The solution to this problem is to simply add more optimistic memory, or
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more network nodes, further distributing the model so that this does not occur. An

indirect cause of this problem is speculative execution. In this case, stalled waiting

for GVT to pass can act as a throttle on the faster nodes in the network such that

they cannot overly speculatively execute, thereby creating the potential for long

rollbacks. This problem is best solved by tuning the GVT interval to more closely

match the amount of available memory.

It is possible to force a GVT computation without disrupting the agreed upon

NAO by simply sending a round of “force” messages. These messages would indicate

that the NAO has pre-maturely expired and effectively changing the next NAO

interval to immediate. Because we have not implemented this feature we cannot

prove it’s correctness, however, we have not found it difficult to choose reasonable

NAO settings. In the performance section of this paper we compute a design of

experiments to determine the best setting for this variable.

5.3.4 Uniqueness

Fujimoto 7 O’clock Mattern Samadi

Cut Calculation Cost O(1) O(1) O(N) or O(log N) O(N) or O(log N)
Parallel/Distributed P P+D P+D P+D

Global Invariant Shared Memory Flag Real Time Clock Message Passing Message Passing
Independent of Event Memory N Y N N

Table 5.1: Comparison of major GVT algorithms to Seven O’clock.

The Seven O’clock GVT algorithm is unique because it uses synchronized Real-

Time Clocks as the global invariant. No message passing is required to communicate

the current view of time among the processors. While algorithms such as Mattern’s

or Samadi’s can be made scalable, there is no lower cost than reading the timestamp

counter on a CPU for constructing a consistent cut. This fact leads us to believe

that the Seven O’clock algorithm must be the most efficient cut algorithm possible.

This is equivalent to the cost of Fujimoto’s algorithm for shared memory processors.

It is difficult to imagine a smaller cost cut algorithm that the setting of a global

variable.

Table 5.1 compares the Seven O’clock algorithm to other widely known algo-

rithms. The most important difference with the Seven O’clock algorithm is that

it is the only known algorithm which is entirely independent of the available event
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memory. Seven O’clock relies on a real-time clock frequency that allows us to begin

to view event processing in terms of the frequency domain rather than the spatial

domain. Each of the other GVT algorithms execute GV Tinterval ∗ Batch events

between GVT epochs. In our algorithm, we are allowed NAOInterval time between

GVT epochs, and so the number of events processed is indeterminate based on the

interval frequency and speed of the individual CPU(s). While outside the scope of

this paper, performing a spectral analysis is useful in determining the power of a

given model. Spectral analysis may also lead to automatic filtering and compression

of model spaces when computing design of experiments.

5.4 Performance Study

There are two benchmark models used in this performance study. The first

is a synthetic workload model called PHOLD. This commonly used benchmark has

been modified to support reverse-computation and is configured to have minimal

Logical Process (LP) state, message sizes and event processing. The forward com-

putation of events involves computing three random numbers: one for computing

if a remote event should be created, one used to compute the time-stamp and one

used for the destination LP. The reverse computation involves “un-doing” an LP’s

random number generator (RNG) in order to restore it’s state. Because the RNG

is perfectly reversible, the reverse computation restores seed state by computing

the perfect inverse function as described in [1]. The destination LP is determined

by calling a uniformly distributed random number generator in the range of 0 to

100. If the generated value is less than the specified percent of remote messages

allowed, we choose the destination LP over an exponential distribution of all LPs,

otherwise, the event will be sent to the source LP. The third call determines the

offset timestamp for events and is exponentially distributed with a mean of 1.0,

with the model completing at timestamp 100. For all experiment runs, we mapped

LPs to Processing Elements (PE) in a round robin fashion. Each simulation run

contained 1 million LPs, and the number of Kernel Processes (KP) was determined

as N2
cpu ∗multiplier. The multiplier was experimentally determined, as is explained

in the next section. The message population per LP is 16. This model is a patholog-
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Figure 5.4: PHOLD results in the distributed cases with 1,2 or 3 proces-
sors utilized per node. The 4 processor cases are clearly af-
fected by context-switching in the operating system for I/O
operations.

ical benchmark which has minimal event granularity while producing a configurable

number of remote events which can result in “thrashing” rollbacks. In [1], KPs

where introduced as an aggregation structure for reducing LP fossil collection and

rollback. One modification to this model was the ability to constrain the number

of remote events created by the LPs. This allows us to analyze the system under

varying workloads.

The second application is a model of TCP and this implementation follows

the Tahoe specification [2]. There are three main data structures in this model: the

data packet which is sent between hosts in the forwarding plane, the network router

LPs which maintain queuing information and forward packets through the network

and the host LPs which keep statistical information on the transferring of data. For
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detailed model design and implemented, we refer the interested reader to [47].

For all TCP experiments we use the campus network defined in [14] which

has been widely used to benchmark many network simulations in the past. We

create a large-scale topology from this small network in the same approach used by

Perumulla in [15], that connects multiple campus networks together to form a ring.

5.4.1 Computing Testbed and Experiment Setup

Initial results were collected on 4 quad-processor Itanium servers. The Itanium-

2 processor [48] is a 64 bit architecture based on Explicitly Parallel Computing

(EPIC) which intelligently bundles instructions together that are free of data, branch

or control hazards. This approach enables up to 48 instructions to be in flight at

any point in time. Current implementations employ a 6-wide, 8-stage deep pipeline.

A single system can physically address up to 250 bytes and has a full 64-bit virtual

address capability. The L-3 cache comes in a 3 MBs configuration and can be ac-

cessed at 48 GBs/second which is the core bus speed. TCP over Gigabit Ethernet

was used as the interconnection network.

The Netfinity cluster at RPI is a Red Hat Linux 9.0 cluster consisting of

40 machines, for a total of 80 processors. Each machines is a Symmetric Multi-

Processor (SMP) machine with two 800MHz Pentium III processors. The 2 CPUs

of each machine share 512 MB of RAM. The 40 SMP machines are connected to

each other via a gigabit ethernet switch.

The Sith cluster computing platform at Georgia Tech is a Linux cluster con-

sisting of 30 machines, for a total of 60 CPUs. Each machine is a Symmetric Multi-

Processor (SMP) machine with two 900MHz Itanium processors. The 2 CPUs of

each machine share 4 GB of RAM. The 30 SMP machines are connected to each

other via a gigabit ethernet switch with EtherChannel aggregation.

All simulators have several input parameters which determine how major facil-

ities such as the GVT computation and fossil collection are performed. For example,

most GVT algorithms define GV TInterval batch loops be performed between suc-

cessive GVT computations. Determining the best values for any simulator is difficult

because every model is different and it is difficult to know which settings yield the
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best performance for a given model. Even within a single execution of a given

model the performance of the model may change. For example, in the TCP model

we present here, the TCP LPs which originate the data in the network have a much

higher event granularity than do the internal IP routers which simply forward data

traffic events through the network. The Seven O’clock algorithm increases this com-

plexity because the time between GVT computations is not based on the number

of events processed, but on the NAOInterval alone. This means that between any

two GVT computations a variable number of events will be processed.

In order to determine the settings that will yield the best for the PHOLD

model, we use the Unified Search Framework (USF) [16] and the heuristic algo-

rithm Random Recursive Search [12]. By using Recursive Random Search

(RRS) approach to design of experiments, we find: (i) that the number

of simulation experiments that must be run is reduced by an order of

magnitude when compared to full-factorial design approach, (ii) it al-

lowed the elimination of unnecessary parameters, and (iii) it enabled the

rapid understanding of key parameter interactions. From this design of ex-

periment approach, we were able to experimentally determine the settings which

yielded the highest performance for the PHOLD model in a relatively small number

of experiments. The best parameter settings for the TCP model were determined

ad-hoc because of time limitations.

Optimistic event memory was computed in each case from the following for-

mula: OptimisticMemory = ceil(g tw nlp/g tw npe)∗phold start events∗multiplier

where multiplier was fixed at 2. Here, g tw npe is the number of processors used

within the cluster configuration, and g tw nlp is the total number of LPs. Dur-

ing distributed execution, each processor consumes approximately, per GVT epoch,

NAOTime / AvgT imeToComputeOneEvent.

5.4.2 PHOLD Performance Data

5.4.2.1 Measuring Performance

In [23], we configured PHOLD with 10% remote messages, 16 seed events per

LP and used the Myrinet network. Figure 5.4 illustrates super-linear results on a
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NumCPU Voluntary CS Involuntary CS Total CS

2 0 12
3 0 14
4 46 1123

Table 5.2: PHOLD context switching in the OS degrades performance
when the simulation “conflicts” with other system processes.

small cluster of 4 Itanium-II machines. Comparing the results in the parallel and

distributed case is complicated because we have results based both on the number

of processors used and based on the number of nodes used. We start by considering

two nodes maximizing the processors before increasing the number of nodes. Then

we consider three nodes, and finally four nodes.

Performance begins to degrade once a configuration becomes overly paral-

lelized. In each node case, when we added the final processor per node, performance

degraded due to context switching in the operating system for I/O operations. We

informally measured the amount of context switches which occurred in each case

and found that the four processor case typically generated greater than 100 times

the number of context switches, as shown in Table 5.2.

Measuring speedup is an attempt to determine the cost of synchronization in a

parallel and distributed environment. Typically Amdahl’s law [101] and Gustafson’s

law [104] are applied by first performing the sequential simulation of the model,

and then comparing each subsequent parallel execution to that. An examination

of these laws is outside of the scope of this paper, but it is widely accepted that

this laws may lead to confusion [102] or even abused depending on how they are

used [103, 105, 106]. Our interest in introducing a new measurement is two-fold.

We would certainly like to be open and honest about our performance results, and

eliminate any possible sources confusion. Second, we would like to be able to easily

compare against previous work.

In performing large-scale simulation it is not always possible to generate a

sequential case for speedup comparison. One constraint of Amdahl’s law is that the

same instructions be processed for the sequential case, as are processed during the

parallel case. One approach to overcome this problem is to use the results from
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the smallest configuration possible as the basis for the sequential time. This is

problematic because, while this minimizes the costs of parallelization, it does not

reduce them entirely, leading to an under-estimation of optimal performance. The

benefit of this approach however, is that the model being measured is exactly the

model used to generate the sequential time.

In [15], the extrapolation was to generate a smaller model running on a single

machine from the largest execution, and to “grow” those results up to the full

model size. This approach leads to an over-estimation of the optimal because the

model used to generate the sequential case is not the actual model being measured.

While this is a highly accepted scientific method used for determining performance

improvements, we show here how the physical nature of the hardware can fluctuate

from those results, creating anomalies which are unexplainable by this method.

These anomalies can only be explained by taking the actual model being measured

into account when computing the sequential case. We note that while this approach

was appropriate for the model in [15], it does not work in the general case.

Clearly a more precise approach is needed for measuring the performance of

parallel and distributed systems. A new approach should take into account all of

the particular details of the underlying hardware, and provide an optimal solution

which cannot be superseded by a super-linear result. Besides context switching,

other problems may arise such as memory bus overloading or serialized memory

references [79, 78, 50], which limit the possible speedup due to parallelism. By

maximizing the number of nodes used in a simulation it is possible to avoid or reduce

these problems by de-coupling the hardware systems which are limiting performance,

and this too must be taken into account when determining the optimal performance

characteristics for a given model.

In the following sections we outline a general approach for measuring the

optimal performance of a parallel and distributed simulation that considers not

only the hardware used but also the model used, and the LP mapping of that model

to the underlying hardware.
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Figure 5.5: Simulator variation measured by design of experiments using
Random Recursive Search.

Parameter Min Max Step

Batch Loop Size 16 4096 32
NAO Interval (seconds) 0.01 0.50 0.01
Number of KPs 450 9000 2

Table 5.3: Input parameters to simulator used in design of experiments

5.4.2.2 Experiment Design

With several input parameters which affect the raw performance of the simula-

tion, it is necessary to compute a design of experiments to quantitatively categorize

the system under test. For this purpose, we utilized the Unified Search Framework

(USF) [16] to create a design of experiments. Because we are only interested in

the highest degree of performance, we used the Random Recursive Search algorithm

[12] within USF to quickly determine the best settings for a particular configuration

of the PHOLD model. The need for a design of experiments is illustrated in Figure

5.5. There is a variation of approximately 5% from the best to the worst experi-

ment, varying the input parameters: NAO interval, size of the batch loop, and the

number of KPs used. Table 5.3 shows the variance on the input parameters. These
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Figure 5.6: Results for 10% and 25% remote messages using increasingly
more Netfinity nodes. Linear speedup for the 25% remote
model was nearly identical.

input parameters were chosen because of their effect on the major simulator facili-

ties, including GVT, event processing and fossil collection. The input parameter for

the number of KPs is actually a multiplier and the number of KPs was selected as

N2
cpu ∗KP Multiplier.

Selecting from the best input parameter settings, a full node configuration was

computed using the Netfinity cluster. The best settings for 10% remote events were

a batch size of 2531, and NAO of 0.36 seconds and a KP multiplier of 2. The best

settings for 25% remote events were a batch size of 886, an NAO of 0.24 seconds and

a KP multiplier of 12. The 25% model response was also approximately 5%. Results

shown in Figure 5.6 indicate excellent linear performance for 10 and 25% remote

events. Super-linear performance was achieved on the Itanium cluster primarily

because of the highly optimized memory hardware and because we were able to

generate a “true” sequential execution time. Linear performance on the Netfinity

cluster was determined by using the LP mapping for the 36 node, 10% remote

event, case, and extrapolating what the sequential case would have been. This is an
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accepted scientifically accepted approach for calculating linear performance speedup,

but it should be noted that this approach over-states the potential speedup possible

because the model used for the sequential case is not the same model being measured.

5.4.2.3 Measuring Optimal Performance: Distributed

Computing the sequential case for performance comparison is not always pos-

sible for large-scale models. The purpose of computing the model sequentially is

to determine the optimal performance without overhead due to parallelization. In

this section we outline a novel approach for determining the optimal performance

of the simulator software given a specific model, hardware configuration and model

LP mapping to the hardware.

Whenever we make improvements to simulator engine facilities, we are at-

tempting to improve performance. At some point, there must exist an achievable

optimal performance beyond which further improvements to the software would not

be able to generate additional speedup. In the past others have determined a se-

quential case by running large-scale models on the minimum hardware required.

But this approach understates the optimal case because it contains code necessary

for resolving contention and communication issues. In addition, this approach also

leads to super linear performance when enough CPU L2 caches are added to the

configuration. Super linear performance occurs because as more compute nodes are

added to the hardware configuration, more of the model will fit into the L2 cache,

and a speedup is gained by the nature of the hardware.

Another problem in determining a base case for performance is in the mapping

of the model to simulator entities (PEs or KPs). Radically different performance

can be measured within the same model when LPs are mapped differently to PEs

because the mapping largely determines the communication and contention load in

the system.

To overcome these problems, we asked ourselves if there was a way in which

we could generate a sequential case over all of the CPUs used per simulation run.

In fact, we wanted to be able to run one instance of the sequential scheduler within

ROSS per CPU. In order to do this however, LPs could no longer send events to LPs
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scheduled on remote CPUs. In order to implement this approach, it was necessary

for us to be able to modify the models in such a way that this did not occur. Using

this approach we were able to take into consideration the hardware configuration,

and the specific model and its mapping of LPs to the hardware.

To determine the optimal performance for the Netfinity cluster, we simply

re-compute the PHOLD model, but this time each event’s destination LP is always

the sending LP. When we constrain the model in this way we no longer require the

parallel scheduler, since we know there will be no contention issues. So, we replace

the parallel scheduler with the sequential scheduler and re-execute the model for

the desired node configurations. It is important to note that by using the sequential

scheduler, we eliminate simulator facilities such as the GVT computation and fossil

collection. Also, because each event is now sent in “loopback” mode, the network

connecting the nodes is not utilized during the simulation. A key observation is

that the model continues to commit the same instructions and events that will be

committed during normal execution. For example, even though each event in the

optimal case is sent in loopback mode, we continue to compute the destination LP.

This means that we continue to execute the same lines of code as in the model

being measured. Comparing the PHOLD model used to determine the optimal

performance to the PHOLD model measured, there was a difference of approximately

3,000 events out of over 161 million events computed. This represents about 2.2e-5%

of variance, but more importantly, the amount of work computed by the model can

be considered equal.

Figure 5.7 shows the actual results plotted against both the Linear Speedup

curve as well as the new Optimal Performance curve. This is done to illustrate

the difference between the two measurements. This figure illustrates the problem

with computing speedup in the typical way. Clearly the linear performance over-

states the actual performance gained because it could not take into consideration

this model’s LP mapping and the hardware used.

We believe that our approach to measuring performance for large-scale mod-

els more clearly illustrates the performance of the simulation executive software

because it takes into account not only the model, but also the underlying hardware
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Figure 5.7: Results for PHOLD configured with 10% remote events, com-
pared to the Optimal Performance possible for the available
hardware. The linear performance curve remains for com-
parison.

limitations. For example, as the number of nodes used increases, the model should

perform increasingly better because more and more of the model fits into the L2

caches. The optimal performance measurement accounts for this behavior, while

the linear speedup curve does not. To properly use the old measurement also re-

quires computing the sequential case for each cluster configuration, otherwise the

performance for the smaller configurations will be under-stated. The optimal per-

formance measurement is correct for each cluster configuration and is therefore a

more realistic measurement of the model for the given hardware and mapping. Most

importantly, the optimal performance measurement is only theoretically achievable

and super-linear results beyond this are unlikely because even if overhead due to

parallelization were eliminated entirely, you would be left with the optimal case.

The performance curves illustrated in Figure 5.7 clearly dip slightly around 14

nodes used, and again at 32 nodes. We changed the machines used to collect these

results several times and found that the curves overlapped with less than 0.1%
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Figure 5.8: We see the same effects of the LP mapping in the 25% remote
event PHOLD model. (The optimal performance curve is not
shown due to scaling.)

variation. If the performance is not dropping due to the underlying hardware or

network used, then it must be the model which is causing the performance anomaly.

In addition, we can rule out major simulator facilities such as GVT or fossil collection

as the cause because they do not exist in the optimal performance curve. The LP

mapping must be the cause for these irregularities because it is the only constant for

both curves which could account for the observed behavior. This is an important

distinction because this clearly illustrates not only what the optimal performance

should be for the given model and hardware, but also given the way in which the

model is mapped for parallelization. Figure 5.8 shows that PHOLD with 25% remote

messages contain the same anomaly, because we have maintained the LP mapping.

In order to clearly (and honestly) represent performance results, it is necessary to

plot the optimal or linear curves to produce a proper scaling. The results in Figure

5.8 do not illustrate good linear improvement. The improvement for 36 nodes is only

2 times that of 10 nodes. We address this special case in the subsequent section.

Clearly one limitation to this approach is that it may not be possible to gen-



122

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1  2

E
ve

nt
 R

at
e

Number of Processors

Parallel Speedup:  100,000 LPs, 16 Start Events Per LP

Optimal Perf
Linear Speedup

10% Remote 
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erate the same critical path workload distributed across multiple sequential sched-

ulers for every model. However, if we want to determine as honestly as possible the

speedup achieved by improvements within the software via either engine improve-

ments or LP mappings, it is clear that this approach is viable when possible.

5.4.2.4 Optimal Performance: Parallel and Distributed

In [23] we observed a performance drop whenever the last CPU on a cluster

node was mapped for the simulation. We have identified the cause of this behavior

to be a high overhead due to context switching within the OS for I/O operations.

In order to quantify the amount of loss due to context switching requires that we

look at the speedup available in parallelization alone.

Figure 5.9 shows both the linear speedup and optimal performance achievable

on a single Netfinity cluster node. This illustrates that linear speedup is not achiev-

able through software alone on this hardware. This is likely due to limitations on

the memory bus between the two processors, as we have measured in the past [1].
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Figure 5.10: Results for PHOLD on the Netfinity cluster. A speedup of
approximately 2 is achieved from 20 to 72 processors.

It is helpful to know what speedup the hardware will allow when measuring the

performance of the simulator software.

Taking the hardware into consideration, ROSS performs within 25% of the

optimal performance achievable through software alone. Figure 5.10 shows the dis-

tributed and parallel results remain far below this level for 2 CPU per node configu-

rations. The primary reason for the poor performance on the Netfinity cluster is the

context switching overhead introduced to handle the network I/O operations, and

not attributable to ROSS. Figure 5.4 does not indicate the same slowdown until we

add the fourth and final processor to the configuration.

In this section we have shown how measuring linear performance is impre-

cise for large-scale distributed simulation because it is difficult if not impossible to

maintain the hardware restrictions for fair comparison or to compute the costs of as-

sociated with the hardware. We have proposed a new measurement called Optimal

Performance, and shown how to collect the result. Optimal performance measures

exactly how fast the given hardware can execute events for a given model. This new

measurement formalizes the performance level of the actual simulator performance,
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Figure 5.11: Campus Network [14]

Figure 5.12: Ring of 10 Campus Networks. [15]

regardless of model size or LP mapping. Intuitively, simulator performance should

not exceed the optimal case. We believe that this measurement will greatly simplify

performance analysis of parallel and distributed simulation.
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5.4.3 TCP Performance Data

5.4.3.1 TCP Model Comparison

Figure 5.11 illustrates the campus network, widely used to benchmark many

network simulators [15, 17, 19, 20, 18] and is an interesting topology for network

experimentation [21]. The campus network is comprised of 4 TCP servers, 30 routers

in 4 LANs, and 504 TCP clients for a total of 538 nodes [14]. Limitations in our TCP

model caused us to have 504 HTTP servers, one to serve each client. In addition, in

order to maintain proper queue statistics at the client links, it was necessary to add

an aggregation router per 10 or 12 client nodes. Our equivalent campus resulted

in 1082 node LPs. Because the networks are equivalent, we refer to our campus

network model as having 538 nodes for ease of comparison.

The campus network is comprised of 4 different networks. Network 0 consists of

3 routers, where node zero is the gateway router for the campus network. Network

1 is composed of 2 routers and the servers. Network 2 comprised of 7 routers, 7
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Nodes Used ROSS PDNS

2 341853 n/a
4 730720 n/a
8 1493702 n/a
16 2817954 in swap
32 5508404 1069905

Table 5.4: Performance results measured for ROSS and PDNS for a ring
of 256 campus networks. Only one processor was used on each
computing node. Rates are packets executed per second.

LAN routers, and 294 clients. Network 3 contains 4 routers, 5 LAN routers, and

210 clients [15]. All router links have a bandwidth of 2Gb/s and have a propagation

delay of 5ms with the exception of the network 0 to network 1 links, which have a

delay of 1ms. The clients are connected to their LAN router with links of bandwidth

100Mb/s and 1ms delay.

For our experiments we connected multiple campus networks together at their

gateway routers to form a ring. The links connecting the campuses together were

2Gb/s with delays of 200ms. Figure 5.12 shows a ring of 10 of these campuses

connected. The traffic was comprised of TCP clients in one domain connecting to

the server in the next domain in the ring. The server would transfer 500,000 bytes

back to the client application. This approach replicates the network created for

PDNS by Kalyan Permulla for [15]. We connected 1,008 campus networks together

to create a network of size 542,304.

Figure 5.13 shows a super-linear speedup on the one processor case per node.

This can be attributed to the decrease in context switching from the two processor

per node case. This is a similar result to what was observed in the PHOLD results

presented in [23].

We attempted to reproduce a model of similar size in PDNS on our Netfinity

cluster but the memory requirements where too high for only 40 machines. The

largest PDNS model that we could get to run was 137,728 LPs using 32 cluster

nodes. We were able to execute this model on one node in ROSS and the results and

performance numbers can be seem in Table 5.4. ROSS was able to achieve 5.5 million

packets per second whereas PDNS processed 1.07 million packets per second. This
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Figure 5.14: TCP model performance improves linearly. Optimal per-
formance achieves a speedup of about 1.6, and the actual
performance about 1.35.

shows that our ROSS implementation has a significantly smaller memory footprint

and achieves 5.14 times in speedup over PDNS.

5.4.3.2 Optimal Performance

In order to measure the optimal performance of the TCP model, we connected

each TCP client to a server within the local campus, rather than a remote campus

within the ring. This allowed us to run the TCP model in the expected configuration

without changing the execution or mapping of the model.

We measured the TCP model’s optimal performance using the Sith Itanium

cluster at Georgia Tech. Comparing TCP performance to optimal performance

indicates that ROSS performance is not in fact super-linear when the hardware and

model mapping is taken into account. Figure 5.14 shows that the actual TCP model

performance achieves a speedup of approximately 1.35, compared to a possibly 1.6

in optimal performance. Similarly, Figure 5.15 shows that for two CPUs utilized per

node, the TCP model achieves a speedup of 2.5 compared to a possible 3.3 optimal.
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Figure 5.15: TCP model performance improves linearly. Optimal per-
formance achieves a speedup of about 3.3, and the actual
performance about 2.5.

5.5 Related Work

Samadi’s algorithm [63] solves the simultaneous reporting problem through

the use of message acknowledgments. Here, processors will tag any “ack” message

that it sends in the period from when the processor reports its LVT until it receives

the new GVT value. This process prevents any messages from “slipping through

the cracks” [73].

In addition to Fujimoto’s and Mattern’s GVT algorithms, there have been a

number of predecessors. Preiss [64] introduced a scheme which places the PEs into

a ring. The first round completes when a token has been passed around the ring

and returns to the initiating PE. When the initial token is received, a PE begins

accounting for remotely sent messages which may or may not complete prior to the

GVT computation. On receiving the second token, a local GVT value is computed

as the minimum between the value stored in the token and the PEs local minimum.

Improvements to this algorithm have been proposed by Bellenot [65] which reduce

the complexity of message passing by organizing PEs into trees rather than a ring.
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Lin and Lazowska [72] propose a new data structure that reduces the frequency of

acknowledgment messages. The work done by Tomlinson and Garg [66] uses counters

to detect transient messages. However, this scheme does not employ the use of a

“cut” as Mattern’s algorithm does. Pancerella [67] propose a hardware based scheme

whereby host systems using custom network interface cards are interconnected to

form an efficient reduction network to rapidly compute GVT.

In follow-up research, Lin [68] uses control messages to efficiently find/flush

out transient messages. At about the same time, D’Souza et. al [69], proposes a

statistical approach to estimating GVT.

Prior to Fujimoto’s GVT algorithm, Xiao et al. [70], proposes an asynchronous

GVT algorithm that exploits shared-memory multiprocessor architectures. Here the

concept of “cages” is used, where each processor own some set of “cages” that it

places or lays down in order to track the LVT of that processor. It is interesting to

note, that here a global Cage Flag much like the gvt flag in Fujimoto’s Algorithm,

is used to “kick off” the GVT computation.

Related to both “consistent cuts” and sequentially consistent memory is the

issue of causality. Most recently, Zhou et al [71], propose a “relaxed” causal receive

ordering algorithm called critical causality for distributed virtual environments.

5.6 Summary

We present a new idea, Network Atomic Operations, and apply it to solving

the global virtual time problem. We use an NAO to generate a zero-cost cut in a

distributed system which is both scalable and efficient. Our experimental results

indicate a super-linear speedup over sequential. We also suggest that there are two

forms of speedup, one due to parallelization and one due to distribution. The parallel

scheduler results were already super-linear, however there is more speedup inherent

to distribution because we eliminate parallelism bottlenecks such as the memory bus

and context switching. In fact, our results indicate super-linear speedup is possible

beyond the amount of speedup due to parallelism.

NAOs lead us to viewing the behavior of Time Warp in the frequency domain

because they define the relationship between virtual time and wall-clock time. In the
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future, it would be interesting to investigate maximum rollback lengths using NAOs.

Computing a spectral analysis of the Time Warp system should allow analysis of

the system which would detect when the forward processing of events is optimal.

When we quantify the system in this manner, it becomes possible to derive a proof

suggesting (assuming the data supports our theory) that optimistic simulation can

consistently perform as well as, if not better than, conservative simulation.

This work is important because it allows us to extend the simulation platform

to the cluster computing environment. The Seven O’Clock algorithm is the first

example of a scalable GVT algorithm which allows for the first time super-linear re-

sults without a loss of model clarity. This is important because it allows us to create

large-scale network simulations without the loss of individual packet granularity.



CHAPTER 6

Discussions and Conclusions

In this thesis a new parallel and distributed discrete event simulator is introduced.

Innovative ideas such as kernel processes, network atomic operations and a new

GVT algorithm, Seven O’Clock, are combined into a single system to provide a

highly efficient, high performance, low memory system. To date, ROSS continues

to be a state of the art Time Warp system with unparalleled performance.

Also introduced in this thesis is a new tool for the meta-simulation of internet

scale networks: ROSS.Net. ROSS.Net aims to bring together the four major areas of

network research: simulation, protocol design, network modeling and measurement,

and experiment design and analysis. ROSS.Net employs such search algorithms as

RRS to “provide good results fast”.

ROSS introduces kernel processes as a new construct for aggregating the high

cost of fossil collecting memory in a Time Warp simulator. The trade-off is po-

tentially longer rollbacks. The performance analysis for kernel processes shows that

overhead for rollbacks was dramatically reduced which allowed the simulation engine

to scale properly. Also, overhead due to longer rollbacks was not observed primarily

due to better use of the memory subsystem which resulted in a more stable system.

In addition, for the first time ROSS showed that an optimistic simulator could run

efficiently in a small amount of memory beyond the needs of sequential execution.

Using network atomic operations we were able to create a zero-cost consistent

cut and the first truly scalable GVT algorithm for the Time Warp protocol. This

advance allows ROSS to scale to millions of logical processes across large cluster

computing platforms. In our performance analysis we presented super-linear results

for the benchmark model rPHOLD, and linear results for our TCP model. We pre-

sented results on a variety of cluster environments ranging from 16 to 80 processors.

With ROSS.Net we take the first steps towards a scalable integration frame-

work capable of simulating traffic from multiple network protocol models. We inte-

grated protocol models with a measurement topology data, namely, the Rocketfuel

131
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description of the internet. For the first time realistic million node topologies were

presented and simulated in high detail.

ROSS.Net incorporates meta-simulation components of the Unified Search

Framework and Random Recursive Search algorithm. We presented a design of

experiments of the OSPFv2 protocol for analysis of the performance of the system.

This design investigated the OSPFv2 convergence response plane for tens of thou-

sands of routers configured within a single OSPF area. We compared a full factorial

design generating 16,807 experiment runs, 20 times more than the RRS design. The

full factorial design yielded less information in the areas that we were interested in

studying. RRS also generated a “good” value for a convergence time of 0.11 sec-

onds, which was within 7% of the Full Factorial design best value. In particular,

we identified the main parameters affecting convergence to be the HELLO protocol

parameters and created a model of these parameters and their effect on the response.

Most recently, we have completed integration of a BGPv4 model into ROSS.Net

which allows us to apply our meta-simulation techniques to even larger and more

complex network scenarios. The BGP network protocol allows us to expand our

investigation into multiple autonomous systems and OSPF areas. We presented

a design of experiments to investigate feature interactions between OSPFv2 and

BGP4. Our response plane focused on the effects of OSPF-caused updates on BGP,

and BGP-caused updates on the OSPF protocol in the control plane. To date,

work in this area has primarily been conducted using measurement data. Using

ROSS.Net, we are able to investigate a much larger parameter space and expand

the scope of the model produced.

Our first design created a high level characterization of the effects of feature

interactions across multiple (5) ASes running BGP between each AS, and OSPF

within each AS. Parameters were classified according the the protocols with which

they were associated and a complete investigation of each classes effects on the

response was studied. This design quantified the effects of each parameter class on

the response.

The second design investigated directly the effects of varying network man-

agement policies. Each policy was optimized to determine the overall effects on the
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response. Each policy was compared to the “global” policy to ascertain the effective-

ness of the optimization. It was determined that optimizing the BGP domain had

little quantifiable effect on reducing the number of interaction update messages in

the system. However, optimizing the OSPF domain, and more specifically, to reduce

OSPF caused BGP updates yielded much better results in reducing the number of

interaction updates in the system.

Now that we have a validation that the OSPF domain adversely impacts the

BGP domain, we can begin to focus our experiments on the hypothesized cause of

the interruptions. Design 3 investigated the effects of cold versus hot potato routing.

In this design we perform a simple full-factorial of RRS optimizations, turning Hot

and Cold Potato routing on and off within the BGP decision algorithm. Our work

shows that while these two policies do have an impact on the response, they did not

account for a large proportion of the response. Our quantification suggested that

effort would be better placed in reducing the effects of LOCAL-PREF and AS Path

Padding.

Our fourth and final experiment design investigated the effects of network

robustness on the response plane. We examined varying degrees of link status fail-

ures and OSPF link weight changes. From the results we see that the response is

independent of the link weight changes. This was surprising since aggressive link

weight policies are known to produce routing loops among other problems. While

aggressive changes impacted the OSPF domain internally, those updates did not

appear to generate subsequent updates in the BGP domain. Link status changes

had a much greater impact on the OSPF caused BGP updates however, because

they directly impacted the iBGP connections. Our results showed that the response

could more than double when link status changes ranged from 1 to 15%. We also

were able to quantify the amount of improvement generated by the heuristic search

to be generally between 10 and 35% over the average configurations.
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